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EXECUTIVE SUMMARY 

Accuracy assessment is the final step in the analysis of classification data which 

enables the accuracy verification of the results. It is carried out once the 

interpretation/classification has been concluded. As a result, we are interested in 

assessing the accuracy of thematic maps or classification images, which is known as 

thematic or classification accuracy. The accuracy assessment examines the agreement 

between the classification data and the reference data or true class. A true class is 

what is seen on the ground or from high or very high-resolution images. Uncertainty or 

lack of information about the true value is associated with accuracy and precision. 

Accuracy is a relative measure of quality and the exactness of an estimate and 

accounts for systematic errors, also known as bias. 

The objective of this task was the methodological development of an accuracy 

assessment technique for the evaluation of the result of the first phase "hard 

constraints" of m/sm MLs Development methodology MAIL task 2.3 known as Marginal 

and Non-marginal land classification map. Statistically robust and transparent 

approaches for assessing the accuracy and estimating area to ensure the integrity of 

the classified map were employed in carrying out the accuracy assessment of the 

classification map and estimating area based on the validation/reference sample data. 

The accuracy assessment was quantified by creating an error matrix that compared the 

classification layer with the validation reference data using point-based and area-based 

assessments. The point-based assessment was developed by stratified random points 

and the area-based by the intersection of the two layers. The accuracy metrics that 

used to evaluate the assessment are the overall accuracy, user’s accuracy, producer’s 

accuracy, error rate, Matthew’s correlation coefficient and F1-score. 

The binary classification measures of accuracy were applied on the test countries of 

Greece, Spain, Germany, and Poland, as well as on a merged layer including all of 

them. The point-based overall accuracy was 71.52% in Greece, 82.87% in Spain, 

60.61% in Germany, and 90.97% in Poland giving an overall accuracy for all testing 

sites of 67.98%, while the area-based accuracy assessment produced an overall 

accuracy of 70.75% in Greece, 83.42% in Spain, 59.79% in Germany, and 90.56% in 

Poland concluding to an overall accuracy for the fusion of the testing sites of 67.73%. 

Both accuracy assessment techniques showed very little differences of 0.5 to 1% 

among the respective testing countries. 
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Comparing the predicted area of the D2.3 methodology for the class of ML with the 

actual reference polygons that were provided for each test country by the respective 

project partners, we quantified the deviation of the predicted ML area for the given 

sites, from the actual truth. More specifically, the classification underestimated the ML 

area in Greece by 341 ha and in Poland by 225 ha. Conversely, the actual ML area 

was overestimated by the classification methodology in Spain by 158 ha and in 

Germany by 8469 ha. 

Analysing the error matrix with the S2GLC map for the provided validation data areas, 

the majority of the correctly classified as ML samples were over the herbaceous 

vegetation land cover, with 51.45% in Greece, 44.20% in Spain and, 96.58% in Poland 

while in Germany most of them were over moors and heathland 49.53% and natural 

material surfaces 42.27%. 

The result of the analysis of the ML validation data areas with the S2GLC map showed 

that the majority of the ML areas 75.13% in Greece, 39.49% in Spain, and 89.88% in 

Poland were over the herbaceous vegetation land cover whereas in Germany they 

were over moors and heathland 47.33% and natural material surfaces 38.52%. 
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 INTRODUCTION AND OBJECTIVES 

MLs are not clearly defined and may differ in nature and extent throughout the 

European Union, mostly affected by latitude. Therefore, ML detection is complicated 

due to its many forms. At this task m/sm MLs will be assessed through field stratified 

random sampling, based on the stratification that will arise by MAIL Task 2.3 (e.g., 

abandoned fields, degraded grasslands, etc.). This assessment was based on 

sampling units with regional form (polygons). The sample size depends on the number 

of polygons that were classified as m/sm MLs. Each ML, according to the area that 

implement the classification will have a specific number of polygons that were classified 

as m/sm MLs (population - N) and through stratification to subpopulations (strata – Ni, 

Nii,…). The sample size (n) will be given by the implementation of statistical methods 

according to the binomial distribution. The minimum sampling size of N will be defined 

by the consortium. The results will be used to refine the proposed methodology and 

adjust the dependencies between indicators of T2.3. 

The main objectives of Task 2.4 (Accuracy assessment of m/sm MLs detection) are: 

• Definition of the statistical methods, limits that are going to be used for the 

accuracy assessment. 

• Accuracy assessment of m/sm MLs detection/classification. 
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 LITERATURE REVIEW 

Many uncertainties surround the meaning and interpretation of map quality, making it a 

difficult variable to assess objectively and severely limiting the ability to assess the 

extent to which remote sensing's potential as a source of land cover data is being 

realized.  As a result, while a thematic map offers an unquestionable simplification of 

reality, it has defects and is just one model or representation of the depicted theme 

(Woodcock & Gopal, 2000). Accuracy is a difficult property to calculate and express, 

despite its apparent simplicity in concept. The term accuracy is commonly used in 

thematic mapping from remotely sensed data to express the degree of ‘correctness' of 

a map or classification. A thematic map derived from a classification can only be 

considered accurate if it depicts the land cover of the area in an impartial manner 

(Foody, 2002). 

For several years, accuracy assessment has been a source of heated discussion and 

study in the field of remote sensing. This is partly due to the fact that commonly used 

standard methods like the kappa coefficient are not always sufficient. Furthermore, the 

kappa coefficient shares features with other accuracy measures in terms of 

compensating for chance agreement and allowing the importance of variations in 

accuracy to be evaluated. However, there are several issues with the evaluation and 

reporting of classification accuracy that make it difficult to interpret accuracy statements 

(Foody, 2002). 

2.1 Overview of accuracy assessment 

In any case, accuracy assessment is an important part of any project that uses spatial 

data, and there are many explanations for this, including: (1) the need to self-evaluate 

and learn from errors, (2) the need to quantitatively compare methods and algorithms, 

and (3) the need to use the information obtained from spatial data analysis in some 

decision-making process (Congalton, 2001). It is also worth noting, that there is no 

distinct way to assess map accuracy, just as there is no single way to produce a map 

as well (Congalton & Green, 2019). Any map’s or spatial data set's accuracy is a 

function of both positional and thematic accuracy; these two types of map accuracy 

evaluation are described below. 

Positional accuracy refers to the precision with which map features are located, and it 

measures the distance between a geographical feature on a map and its true or 



[D2.4] Report on Accuracy assessment  
 
 

 

[12|78] 

reference position on the ground (Bolstad et al., 2005). More specifically, positional 

accuracy deals with the accuracy with which a point in imagery is mapped with 

reference to its physical location on the ground. The ability to determine the same 

exact position on the image and on the ground is important for any accuracy 

comparison. Topography, or the natural and artificial physical features of an 

environment, is the most important factor affecting positional accuracy, while sensor 

characteristics and viewing angles may also have an effect. Conventionally, positional 

accuracy has been calculated in terms of the Root Mean Square Error (RMSE). The 

RMSE is calculated as the sum of the squares of the differences between the location 

of a point on one data layer and the same point on another data layer, usually the 

ground, applying the same data that was utilized to register the layers together. The 

equation (Barnston, 1992) is: 

𝑅𝑀𝑆𝐸𝑓𝑜 = [∑(𝑧𝑓𝑖
− 𝑧𝑜𝑖

)
2

/𝑁]1/2

𝑁

𝑖=1

 

Where: 

f = forecasts (expected values or unknown results) 

o = observed values (known results) 

(Zfi – Zoi)2 = differences, squared 

N = sample size 

As a result, this metric is not an independent indicator of positional accuracy. 

Alternatively, collecting an independent sample of points from which to compute the 

RMSE would be more efficient and representative of true accuracy (Congalton, 2007). 

Thematic accuracy deals with the labels or attributes of the features of a map, and 

measures whether the mapped feature labels are different from the true feature label. 

Thematic accuracy refers to the accuracy of a mapped land cover category at a 

particular time compared to what was actually on the ground at that time. Land cover 

classifications must be tested using data that are considered to be accurate in order to 

perform a meaningful evaluation of accuracy. Thus, it is critical to have some 

understanding of the accuracy of the reference data before comparing them to the 

remotely sensed map (Congalton, 2007). 

Although these two types of accuracy can be evaluated independently, they are 

inextricably linked, and failing to consider both is a serious mistake. All accuracy 
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assessment workflows follow a three-step process: (1) creating an accuracy 

assessment sample, (2) gathering data for each sample, and (3) interpreting the results 

(Congalton & Green, 2019). 

The accuracy of the final map in a remote sensing project is the result of the 

accumulation of several errors along the way (Figure 1). Each of the major error 

sources may contribute to the total error budget separately, and/or through a mixing 

process. For many applications, it is critical to define and comprehend (1) error 

sources, as well as (2) the appropriate mechanisms for regulating, minimizing, and/or 

disclosing the severity of such errors to end-users (Congalton, 2001). 

 

Figure 1. Error sources and accumulation of error in a typical remote sensing project 
(Lunetta et al., 1991). 

When conducting an accuracy assessment, there are various aspects to be considered 

in addition to the actual analysis techniques. In practice, if these aspects are not taken 

into account, the techniques are of little use. Thus, in order to produce a correct error 

matrix, the following factors must be regarded  (Campbell, 1981; Congalton, 1988a, 

1988b, 1991; Congalton & Green, 1999; Hay, 1979; Stehman, 1992; Van Genderen & 

Lock, 1977):  
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• Classification scheme; 

• Sampling scheme; 

• Spatial autocorrelation; 

• Sample size; 

• Reference (ground) data collection and; 

• Sample unit 

Each of these factors contributes valuable information to the assessment analysis and 

omitting any one of them may result in serious flaws in the assessment process. 

2.2 Classification Scheme 

When designing a project that makes use of remotely sensed data, it is critical to 

devote enough attention to the classification scheme that will be used. Classification 

schemes are a method of processing spatial data in a logical and orderly manner. Any 

mapping project needs classification schemes because they summarize the total 

number of objects considered to a manageable number and help sort out the chaos in 

the row data. 

The classification scheme allows the map maker to characterize landscape features, in 

such way that they are also quickly discernible by the user. There are two essential 

components to a classification scheme: firstly a set of labels (e.g., water bodies, 

coniferous forest, etc.); and secondly a set of rules or definitions, such as a 

dichotomous key for label assignment (e.g. in the climax stage, shrubby formations 

with sparse trees have a canopy closure of 15 percent or less, and tree heights of over 

5-7 m.)(Congalton & Green, 2019). 

Any classification system should be mutually exclusive and fully comprehensive. To put 

it another way, any region that needs to be classified should appertain to only a single 

category or class and all the image regions should be entailed in the classification. 

Finally, the use of a hierarchical classification system, if feasible, would be highly 

beneficial. Particular categories within the classification system may be summarized 

into more general ones if such a scheme is used. 

2.3 Sampling Design 

The sampling design dictates how the subset of the map will be chosen, which 

establishes the basis for the accuracy assessment (Finegold et al., 2016). For the 

sampling design, the following are considered prerequisites: Being familiar with the 
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distribution of thematic classes over the study area, concluding on the types and the 

number of samples to be acquired, and selecting a sampling scheme for picking the 

samples. One of the most difficult and critical components of any accuracy assessment 

is the design of an appropriate and effective sample to collect accurate validation and 

map accuracy data since the design will determine both the cost and the statistical rigor 

of the assessment (Congalton & Green, 2019). 

2.3.1 Sampling scheme 

A sampling scheme is an essential part of any accuracy assessment therefore, the 

right scheme must be mindfully selected in order to generate an error matrix that is 

indicative of the entire classified image. Poor sampling scheme selection may introduce 

major biases into the error matrix, potentially overestimating or underestimating the 

true accuracy. Furthermore, depending on the analysis techniques to be applied to the 

error matrix, the appropriate sampling scheme may need to be chosen (Congalton, 

1991). 

Simple random sampling, systematic sampling, cluster sampling, stratified random 

sampling, and stratified systematic unaligned sampling are some of the sampling 

schemes that can be used to obtain accurate assessment results. 

Each sample unit in the research area has an equal probability of being chosen in a 

simple random sample. Usually, a random number generator is utilized to obtain 

random x and y coordinates for collecting samples. Randomness has some interesting 

statistical properties that are useful for further analysis of the data (Congalton & Green, 

2019). 

Systematic and cluster sampling can also be beneficial in practice. Systematic 

sampling is a technique in which sample units are chosen at a predetermined and 

constant interval throughout the study region. The first sample is, typically, chosen 

randomly, and subsequent samples are taken at predetermined intervals. The main 

benefit of systematic sampling is the ease with which it can be done uniformly across 

the entire study area (Congalton & Green, 2019). Cluster sampling has proved 

especially useful in assessing remotely sensed data since it allows quickly collecting 

information on many samples. While gathering an abundance of sample units in 

contiguity to one another has some clear advantages, cluster sampling should be used 

mindfully and cautiously (Congalton & Green, 2019). 
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Simple random sampling and stratified random sampling are similar techniques. 

However, a level of previous knowledge of the study area is required to split it into 

smaller regions or strata, which are then randomly sampled. The main benefit of 

stratified random sampling is that it includes all strata (i.e., map classes), no matter 

how small they are. This is particularly critical when it comes to ensuring that enough 

samples, from rare but important map classes, are included (Congalton & Green, 

2019). 

Finally, stratified systematic unaligned sampling aims to combine the benefits of 

randomness and stratification with the efficiency of a systematic sample while avoiding 

the shortcomings of systematic sampling's periodicity. This can be considered as a 

fusion method, which gives more randomness to the stratum than just a random start 

(Congalton & Green, 2019). 

In any case, each scheme has its own set of pros and cons, hence it is critical to 

comprehend them all and implement the one that is best suited for the situation. The 

analysis must then be done in accordance with the chosen sampling scheme. 

Generally, stratified random sampling is regarded by some authors as the most 

suitable sampling method (Congalton, 2001). 

2.3.2 Spatial Autocorrelation 

Spatial autocorrelation is a measure of the positive or negative impact that a feature at 

a specific location has on its immediate surroundings. When determining which 

sampling scheme to use, spatial autocorrelation is an important factor to consider. If 

there is a positive correlation between samples, it is important to place the samples far 

enough apart to eliminate this correlation for the precision of the accuracy estimates. 

This is particularly true for sampling schemes such as cluster sampling and systematic 

sampling (Congalton, 2001). 

When the presence, absence, or degree of one characteristic influences the presence, 

absence, or degree of the same characteristic in neighbouring units, is known as 

spatial autocorrelation (Cliff, 1973). This condition is especially significant in accuracy 

assessment if an error in one location is observed to affect errors in adjacent locations, 

either in a positive or a negative way (Campbell, 1981). 
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2.3.3 Sample size 

Evaluating the entire mapped area in most projects is a waste of resources, therefore 

in order to evaluate the classification accuracy, a sample of cases is used. This sample 

is called the testing set (Foody, 2009). When it comes to developing and interpreting 

classification accuracy estimates, the sample size is crucial. 

Accuracy assessment necessitates the collection of a sufficient number of samples per 

map class, such that, the result is a statistically accurate representation of the map's 

accuracy, but as small as possible to reduce the budget (Finegold et al., 2016). To 

calculate the appropriate sample size, most researchers initially used an equation 

based on the binomial distribution or a standard approximation to the binomial 

distribution. These methods are statistically sound for determining the sample size 

required to calculate the overall accuracy of a classification or even the overall 

accuracy of a particular category. The equations are dependent on the proportion of 

sample units that are correctly labelled as well as a margin of error. On the other hand, 

though, these methods were not intended for selecting a sample size for producing an 

error matrix. 

When it comes to building an error matrix, it is not simply a matter of right or wrong 

(binomial distribution). On the contrary, it is a matter of determining which errors or 

categories are being confused. In an error matrix with n land cover categories, there is 

one correct answer for each category and (n-1) incorrect answers. To accurately reflect 

this challenge, enough samples must be collected. Thus, the binomial distribution 

cannot be used to determine the sample size for an error matrix. The use of a 

multinomial distribution is suggested instead (Tortora, 1978). 

The multinomial distribution can and should be used to calculate the required sample 

size for each project. However, for maps of less than 1 million acres in size and less 

than 12 classes, as a "rule of thumb" it is suggested to collect a minimum of 50 

samples for each mapping class (Congalton, 1988a). Each class should have 75 to 100 

accuracy assessment sites for larger area maps or more complex maps. These 

guidelines were developed empirically over several projects, and the multinomial 

equation proved that they strike a good balance between statistical validity and 

practicality. 

As a result, practical considerations are often a major factor in determining sample 

size. The number of samples for each category, for example, may be modified based 
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on the relative significance of that category within the mapping project's objectives or 

the inherent variability within each of the categories (Banko, 1998). Due to budget 

restrictions or other factors, it is often preferable to focus the sampling on the 

categories of interest and increase the number of samples taken in those categories, 

while decreasing the number of samples taken in less influential categories (Finegold 

et al., 2016). 

Summing up, it might seem tempting to create a sample that includes a large number 

of samples from the most accurate categories and a small number of samples from the 

most confusing categories. Even though this technique would ensure a high level of 

accuracy, it would not be indicative of the map’s accuracy. It is recommended to make 

sure that the sampling effort is well-planned and executed and to note that both smaller 

and larger sample sizes may be problematic (Foody, 2009). In any case, it is important 

to record the whole process so that potential map users will understand how the 

assessment was completed. 

2.4 Response Design 

The response design for the accuracy assessment is the protocol that encompasses all 

steps that determine whether the map and the reference data are in agreement. Under 

the assumption that the reference data sources are adequately more accurate than the 

map classification being evaluated, the response design provides the scheme for the 

comparison of the classification with the reference map (Olofsson et al., 2014).  

2.4.1 Reference Data Collection 

It is worth noting that accurate ground or reference data must be obtained in order to 

properly determine the accuracy of the remotely sensed classification. The accuracy of 

the ground data, on the other hand, is rarely known, and the amount of effort required 

to collect the necessary data is rarely understood. While no reference data set can be 

entirely accurate, the reference data must be as accurate as possible; otherwise, the 

assessment would not be correct. As a result, any accuracy assessment must carefully 

evaluate the compilation of ground or reference data (Congalton, 2007). 

It should also be mentioned that the reference data are commonly referred to as 

"ground truth" data. While it is true that the reference data are regarded as more 

accurate than the map being evaluated, this does not mean that they are flawless or 
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represent "the truth." Consequently, the word "ground truth" is unsuitable and, in some 

cases, inaccurate (Congalton & Green, 2019). 

Field measurements, existing maps or even higher resolution satellite imagery may be 

used as reference data. Aerial photography is commonly used to assess the accuracy 

of maps produced with moderate-resolution satellite imagery, such as SPOT and 

Landsat TM, ground visits are frequently used to assess the accuracy of maps created 

with high-resolution airborne imagery, and manual image analysis is usually used to 

evaluate the accuracy of various classification algorithms (Congalton & Green, 2019). 

The following factors, or a combination of them can cause errors in the reference data: 

(1) variations in registration between reference data and remotely sensed map 

classification, (2) data entry errors, (3) classification scheme errors, (4) variations in 

land cover between the date of remotely sensed imagery collection and the date of the 

reference data, and (5) errors in marking reference data (Congalton & Green, 2019). 

2.4.2 Spatial Unit 

The spatial unit used in accuracy assessment must also be considered. The spatial unit 

is used to compare map and reference data. In the sampling procedure, the spatial unit 

may either match the map's resolution or require the aggregation of pixels to pixel 

blocks (Finegold et al., 2016). Individual pixels, clusters of pixels, or polygons can be 

suitable sample units, depending on the application. Polygon sampling is the most 

widely used method to date. To keep the accuracy assessment's spatially explicit 

character, the user should aim for reference data with the same or higher level of detail 

(Finegold et al., 2016). It has been referred that, although the pixel is the most common 

spatial unit, depending on the project's requirements, a grouping of pixels, such as a 

3x3 block or a polygon, might be chosen as the sample unit. (Congalton, 2001). 

2.5 Analysis 

Depending on the detection technique, every project has different accuracy 

requirements and type of assessment strategy. Accuracy assessment is more than an 

indication of the map’s accuracy; it also provides sample data that can be employed in 

order to minimize the bias in pixel counting and to reduce the standard error in the 

estimated area. 
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2.5.1 Error Matrix 

An error matrix is the most common way to describe the classification accuracy of 

remotely sensed data (sometimes called a confusion matrix or a contingency table). 

Many researchers have recommended using an error matrix to define accuracy, and it 

should be accepted as the standard reporting convention. An error matrix is a square 

array of numbers laid out in rows and columns that expresses the number of sample 

units (pixels, clusters of pixels, or polygons) assigned to a particular category in 

comparison to the actual category as checked on the ground. The reference data 

(ground truth) is represented by the columns, while the classification produced by 

remotely sensed data is represented by the rows (Table 1). The number of rows and 

columns in such matrices is equal to the number of categories whose classification 

accuracy is being measured (Lillesand et al., 2015). 

An error matrix is a very useful way to reflect accuracy since it clearly describes the 

accuracies of each category as well as the inclusion (commission errors) and exclusion 

(omission errors) errors present in the classification. When an area is entailed in the 

wrong category, it is called a commission error. While, when a field is left out of the 

group to which it corresponds, it is called an omission mistake. Any error on the map is 

an omission from the right category and a commission to the wrong one (Congalton & 

Green, 2019). 

Table 1. Example of an error matrix. 

Satellite Image 

Classification 

Reference Data (Ground Truth) 

A B C Row Totals 

A AA AB AC  

B BA BB BC  

C CA CB CC  

Column Totals    Sample Total 

 

A variety of descriptive and analytical statistical methods can be initiated from the error 

matrix. Overall accuracy, for example, is calculated by dividing the total correct (i.e., the 

sum of the major diagonal) by the total number of pixels in the error matrix. This value 

was part of the older, site-specific evaluation and is the most widely mentioned 

accuracy assessment statistic (Congalton, 1991). 
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Additionally, individual category accuracies can be calculated in a similar way. 

Nevertheless, in this situation, there is the option to divide the number of correct pixels 

in that category by the total number of pixels either in the corresponding row or the 

corresponding column. The total number of correct pixels in a category is typically 

divided by the total number of pixels in that category as determined by the reference 

results (i.e., the column total). Generally, errors of commission arise when a pixel is 

incorrectly included in a category being evaluated, whereas errors of omission occur 

when a pixel is left out of the category being evaluated. Since the classification's 

producer is interested in how accurately a specific area can be categorized, the 

omission error, often referred to as producer's accuracy, indicates the likelihood of a 

reference pixel being correctly classified. On the other hand, commission error, also 

known as user accuracy, indicates the likelihood that a pixel classified on the 

map/image represents that category on the ground (Story & Congalton, 1986). 

The error matrix for the accuracy assessment should be rigorously generated, in order 

to be considered trustworthy. A key assumption in all of the above analyses is that the 

error matrix is genuinely representative of the entire classification. If the matrix is 

improperly generated, then all the analysis is meaningless. 

2.5.2 The kappa coefficient 

Another widely applied way of measuring a map’s accuracy is the Kappa coefficient 

(Cohen, 1960), which is a gauge of the proportional improvement by the classifier over 

a purely random sample to classes (Agyemang et al., 2011). It shows the extent to 

which the correctly classified values of an error matrix are attributed to a “true” versus a 

“chance” agreement. In other words, it is a means of comparing the observed 

agreement to an arbitrary expected agreement, if the observer ratings were 

independent. Additionally, it denotes the proportionate reduction in error caused by a 

classification process, as opposed to an error caused by a completely arbitrary 

classification (Cohen, 1960; Munoz & Bangdiwala, 1997).  

The leverage of the Kappa analysis technique is that it produces two statistical tests of 

significance. The first one offers the possibility to test if a given land cover map 

generated from remotely sensed data is significantly better than if it had been 

generated by haphazardly assigning labels to regions. The second one compares 

between any two matrices to check if they are statistically significantly different. In 

consequence, it is possible to determine if an algorithm differs from another and 
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conclude which one performs better, based on a chosen accuracy measure (e.g. 

overall accuracy) (Congalton, 2001). Nonetheless, the validity of the aforementioned 

conclusions is arguable and numerous articles have questioned the use of the Kappa 

coefficient analysis  (Foody, 2002; Pontius Jr & Millones, 2011; Stehman, 1997). 

2.5.3 Binary Classification 

Binary classifiers are statistical and computational models that divide an unknown 

dataset into two segments: positives (P), and negatives (N). The dataset is hence 

classified to P or N. In order to assess the functionality of a classifier, its prediction 

performance needs to be evaluated (Saito & Rehmsmeier, 2015). This method was 

deemed necessary due to a difference in the numbers of positive and negative 

occurrences. Typically, such an imbalance in classes, with the negatives outnumbering 

the positives, is naturally evident in various scientific areas with unequal class 

distributions (Chawla et al., 2002, 2004; Kubat et al., 1998; Rao et al., 2006). For a 

model’s class predictions, the labels {T (True), F (False)} are used to differentiate 

between the actual class and the predicted one. In this project, the ML Hard Layer is 

the classification model that was trained in the training phase, to predict the true 

classes of the ML (P) and nML(N) (Tharwat, 2020). The binary classifier then classifies 

all data instances as either positive or negative and ultimately generates four types of 

outcomes: 

1. True Positives (TP): is the correctly classified positive sample when the sample 

is positive, and it is also classified as positive (i.e., ML and the detection 

methodology classified it as ML). 

2. True Negatives (TN): is the correctly classified negative sample when the 

sample is negative, and it is also classified as negative (i.e., nML and the 

detection methodology classified it as nML). 

3. False positives (FP): is the incorrectly classified positive sample, when the 

sample is negative, but it is classified as positive (i.e., nML, that the detection 

methodology classified it as ML, “What it says is ML, is actually nML”). 

4. False negatives (FN): is the incorrectly classified negative sample, when the 

sample is positive, but it is classified as negative (i.e., ML, that the detection 

methodology classified it as nML. “Worst prediction”). 

The 2x2 error matrix formulated by the above-mentioned outcomes is called a 

confusion matrix. It is based on a pixel-by-pixel comparison of the thematic map and 
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the reference points for the accuracy assessment sample, and the class labels 

allocated by the map and reference data are cross-tabulated. All the basic evaluation 

measures based on the binary classification are calculated from the confusion matrix. 

The correct predictions are represented by the green diagonal, while the incorrect 

predictions by the pink diagonal (Figure 2). 

 

Figure 2. Confusion matrix. The output of the predicted class is either True or False. 

The most commonly used performance measures, based on binary classification, are 

accuracy and error rate (ERR) (He & Garcia, 2009). Sensitivity and specificity are two 

other popular metrics (Altman & Bland, 1994). Sensitivity is equal to the true positive 

rate and recall, while specificity is equal to one minus the false positive rate. Precision 

is another measure and it is equivalent to positive predictive value. Quality Factor, also 

known as the Jaccard metric or Tanimoto similarity coefficient describes the quality of 

the positive class. The Matthews correlation coefficient (MCC) (Baldi et al., 2000) and 

the F1-score (Goutte & Gaussier, 2005) are also useful but are used less frequently. 

2.6 Concluding remarks 

Despite recent developments, the existing state of accuracy assessment suggests that 

several issues remain to be solved. Therefore, despite the fact that the topic has 

progressed significantly, there is still room for improvement. The commonly used 

methods for accuracy assessment and reporting are often inaccurate, which is a major 

source of concern. Despite the apparent objectivity of quantitative accuracy 

measurements, it is important to view accuracy assessment statements with caution. 

An apparently objective accuracy assertion may be misinterpreted due to a variety of 

factors (Foody, 2002). 

There are several aspects of classification accuracy assessment that must be 

considered. The first is that the accuracy of any estimation is just as good as the 
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information used to determine the "true" land cover types present in the test sites. The 

accuracy assessment process should, as possible, entail an estimation of the errors 

inherent in the reference data. It is not unusual for image interpretation errors, spatial 

misregistration, data entry errors, and changes in land cover between the date of the 

classified image and the date of the reference data to affect the accuracy of the 

reference data. The second point to be noted is that the accuracy assessment 

procedure should be structured to reflect how the classification is intended to be used. 

For example, a single pixel misclassified as "wetland" in the middle of a "corn" area 

may be insignificant in the development of a regional land use plan, but it may be 

inappropriate if the classification is used to determine land taxation or implement 

wetland protection legislation. The third point is that remotely sensed data are usually 

just a small subset of the many different types of resident data found in a GIS (e.g. it is 

likely the propagation of errors through the multiple layers of information in a GIS) 

(Lillesand et al., 2015). Finally, it has been noted that high overall map accuracy is not 

always representative of the high detection accuracy of individual classes (GFOI, 

2013). Therefore, both producer’s and user’s accuracy need to be computed and taken 

into consideration for all individual classes. 

Summing up, it is important to note the following established principles: 

• Examining the map visually is essential, but it is not sufficient. "It appears to be 

accurate" is not a statement of fact. 

• A classification is not complete until it has been evaluated. Only then, can 

judgments based on that information be considered valid. 

• Quantitative accuracy assessment is a powerful tool for evaluating spatial data, 

both descriptively and analytically. 

• Choosing the right reference data is crucial. 

• The accuracy assessment is based on the error matrix. 

• Any form of accuracy assessment should be reported to the user. 

• Suggestions for improving the classification can be made by interpreting 

accuracy in classes. 

• What is true and realistic in a specific area may not be true or feasible in 

regional or global projects. 

• We are unable to foresee all the issues that could occur when dealing with large 

areas. 
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• Each project has its own set of accuracy requirements and assessment 

strategies. 

• High overall map accuracy does not always imply high individual class detection 

accuracy. 
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 METHODOLOGY 

For the task of the accuracy assessment, two different approaches were applied (see 

Chapter 3 and Annex I: Initial Approach). In the initial approach, an attempt was made 

to evaluate the Final Map from MAIL deliverable 2.3 using Esri’s WGS84 Imagery map 

from ArcGIS online as a reference, on specific testing sites in Germany, Greece, 

Poland and Spain. Although this method attempts to evaluate the accuracy of the final 

product of the detection methodology applied in MAIL deliverable 2.3, the actual 

assessment proved to be very challenging. The interpretation of marginality and 

suitability (Marginal Lands, Potential Marginal Lands and Unsuitable Lands), on which 

the Final Map layer is based, can be subjective, depending on the needs and 

differences among countries. Furthermore, the whole evaluation would be based on the 

interpreter’s manual assignment of agreement based on satellite imagery, potentially 

introducing the interpreter’s uncertainty and bias. 

For these reasons, this approach is not complete and lies in Annex I and a more 

objective one was developed. The steps applied for the evaluation of the ‘’ML and nML 

Classification” layer on the dictated test countries, for which validation data were 

obtained, are presented in the following flowchart (Figure 3) and are described in the 

subchapters Error! Reference source not found. to 3.3. 

 

Figure 3. Workflow of the accuracy assessment methodology. 
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3.1 Datasets And Validation Sites 

To properly evaluate the results after the implementation of “hard” thresholds in MAIL 

task 2.3, “ground truth” validation data were acquired from the test sites of the four 

different test countries of Greece, Spain, Germany, and Poland. 

The result of the analysis of this “hard” thresholds phase is an intermediate layer, 

named “Marginal and Non-marginal land classification” layer, which included all 

potential Marginal Lands (ML) and all LULC types that are not fulfilling the MAIL 

definition of Marginal Lands ("impervious", "croplands", "forest", "protected areas" 

"water bodies", "permanent snow", "marshes", "peatbogs" and "changed”) like non-

marginal land (nML). For more details refer to MAIL deliverable 2.3. The two classes 

are a full representation of the total study area; no region pertains to two classes and 

no region is excluded from the classification. 

ML: areas derived after the implementation of the hard constraints threshold. 

nML: all the area that has been excluded in the process of generating the hard layer. 

 

3.1.1 Validation data 

To properly evaluate the ML and nML classification layer, experts from each country 

provided polygons consistent with the ML and nML MAIL classification definition that 

would serve as reference data for each country. This was through experts’ prior 

knowledge of the land use and land cover, landscape and terrain and visual 

interpretation of ML and nML areas from high-resolution imagery to freely available 

Google Earth, Google Earth Engine and High-resolution GIS software basemaps, etc. 

The order of selection for analysis of each test country was based on their climatic 

condition. Greece and Spain have predominantly Mediterranean climates, while 

Germany and Poland have predominantly temperate climates. Additionally, in order to 

gain an overall insight into the performance of the ML and nML classification 

methodology, the testing sites from the four countries were merged and the same 

accuracy assessment procedure was followed. The colour code for each test country 

introduced in Table 2 will be used throughout the document to easily identify each 

country in this report. Figure 4 represents the ML classification layer for each country. 
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Table 2. Total provided area of ML and nML test sites for each test country. 

Test Site ML nML 

Greece 7988 ha 5274 ha 

Spain 1649 ha 2199 ha 

Germany 352 ha 20,913 ha 

Poland 539 ha 2463 ha 

Merged 10,529 ha 30,849 ha 

 

 

Figure 4. ML classification layer for Greece, Spain, Germany and Poland. 
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Greece 

In Greece, 28 different areas consisting of separate ML and nML polygons were 

provided for various areas spread across the country, like, Kozani, Serres, Florina, 

Drama, Kastoria, and Pella, as presented in Figure 5. A total of 7988 ha of ML and 

5274 ha of nML areas were provided (Table 2). According to the project partner, these 

areas were selected based on their land use and specific site knowledge. In many 

cases in the ML area polygon or the surrounding nML there were successful 

afforestation areas with conifers (e.g., region of Kozani), which supports their 

identification as ML by the partner since the state had already considered them as 

marginal and suitable for afforestation sometime in the past. The majority of these 

lands are either grasslands or partially scrublands. Moreover, some of these lands are 

used as pastures but they are neither regularly managed, nor they are calculated in 

any future afforestation project, therefore they can be considered as marginal and 

suitable for afforestation. 

 

 

Figure 5. ML and nML validation data locations in Greece. Highlighting three from the 
provided polygon in Samothraki, Antissa, and Chios Regions. 

Spain 

Accordingly in Spain, 10 different areas consisting of individual ML and nML polygons 

were provided, covering various regions of the mainland, like Cuenca, Soria, Segovia, 

León, Valladolid, Zamora, Burgos, and Ávila (Figure 6), contributing to a total of 1649 
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ha of ML and 2199 ha of nML areas (Table 2). According to the project partner, the 

landscape varies among the polygons, since they tried to cover all the regions. These 

regions are grasslands, scrublands, and bare land based on a regional layer of land 

cover and land use. Protected areas where afforestation is not recommended by the 

regional government due to conservation issues were excluded as well as areas where 

the slope and elevation exceed 35% and 1800 m. Also, from these regions, the arable 

use layers were removed. One of the principles under which these areas were selected 

is that these areas are not currently used and there is no economic activity. 

 

 

Figure 6. ML and nML validation data locations in Spain. Highlighting three from the 
provided polygon in Soria, Burgos, and Ávila Regions 

 

Germany 

For Germany three different areas each consisting of ML and nML polygons totalling 

352 ha of ML and 20,913 ha of nML areas were provided from certain regions like 

Nochten-Reichwalde, Grafenschau, and Sallgast in the Federal State of Saxony 

(Figure 7). Obtaining large reference data of ML polygons in Germany proved to be 

challenging due to the fact that most of the low profit, low fertile, unused or abandoned 

lands, designated as “Odlands” (wastelands or marginal), reside in areas designated 

as protected, which is out of the scope of the MAIL definition. 
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Figure 7. ML and nML validation data locations in Germany. Highlighting the 3 provided 
polygon in Nochten-Reichwalde, Grafenschau, and Sallgast. 

 

Poland 

ML in Poland are mostly caused by the abandonment of agricultural areas (fields). The 

agriculture fields, however, are typically fragmented, relatively small (usually long and 

narrow) and in some cases pertain to bigger regions classified as protected. As a 

result, 12 different areas, consisting of various small, narrow and fragmented ML and 

nML polygons could be gathered, providing a total area of 539 ha of ML and 2,463 ha 

of nML in the region of Świętokrzyskie Voivodeship (Figure 8). 
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Figure 8. ML and nML validation data locations in Poland. Highlighting some of the 
provided polygons in the region Świętokrzyskie Voivodeship. 

 

3.1.2 Spatial Unit 

When comparing layer and validation data, a spatial unit is used, which, for sampling 

data in this type of classification, can be a pixel or a pixel block. In the sampling 

procedure, the spatial unit can either match the resolution of the map or involve the 

aggregation of pixels to a pixel block. In this task, two different units will be utilized 

leading to two different approaches that in the end will be compared with each other: 

the pixel, which is the same size as the basemap of the detection methodology, 10 x 10 

m, and the area of the reference polygons, which proved to vary significantly from 

polygon to polygon due to the difficulties described previously in gathering reference 

data. 

3.1.3 Sample Size 

For this project, the testing set comprises of the validation sites that were provided by 

the MAIL partners for each country. It was decided that each project partner would 

provide a minimum area of 1,000 ha meeting the definition of ML and nML as defined 

in MAIL deliverable 2.1, for the objectives of the accuracy assessment. The whole area 

that was provided by each country’s experts will be utilized, but since each partner was 

able to provide areas of different extent for ML and nML validation data, the sample 

size for the accuracy assessment in each country varies as well. 
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3.2 Analysis 

3.2.1 Point-based assessment 

To comply with the international standard organization (ISO) 2859 Series and 3952-1 

2005  “Guideline of defining sample size and devising sampling Methods” and to have 

a full representation of the total provided validation data, a stratified random 

sampling design, was chosen as the most suitable sampling scheme. The two 

validation data classes were used as strata for determining the sample size, 

conforming with the equal probability sampling designs, simple random, stratified 

random and systematic designs, in which the validation data strata also correspond to 

the layer classes. 

Here, the usual Binomial Probability Theory of determining the number of samples is 

not going to be used but an arbitrary number of one sample point per hectare was 

deemed suitable. This was chosen because the number of sample points had to be 

large enough to produce sufficiently precise estimates of the ML and nML classification 

layer accuracy, but not too large to raise the probability of spatial autocorrelation issues 

or over-estimation of the significance of any non-zero difference (Foody, 2009). Thus, 

the number of points allocated to each ML and nML class is proportional to the total 

size in hectares of validation data provided, as shown in Table 3. 

Table 3. Sample size and allocation of sample points for each test country. 

 ML nML 

 Area [ha] Allocated Points Area [ha] Allocated Points 

Greece 7988 7988 5274 5274 

Spain 1649 1648 2199 2199 

Germany 352 352 20,913 20,913 

Poland 539 539 2463 2463 

Merged 10,529 10,529 30,849 30,849 

 

The stratified random sampling technique was applied using the ArcGIS Pro, tool 

“create random points”. This way, the predefined number of sample points for each 
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class was distributed over the whole ML and nML classes polygons, representing fully 

the testing sites. 

A subset of the ML and nML classification layer was created based on the provided 

validation data for each country using the “Extract by Mask” ArcGIS Pro tool. The cell 

values of the classification layer were then extracted based on the previously 

generated set of point features (sample points) using the ‘’Extract values to points’’ tool 

and their values were recorded as a new field in the attribute table. Finally, the attribute 

table of the extracted points for each test country was exported for further analysis. An 

example of the sample points is shown in Figure 9. 

 

 

Figure 9. ML and nML land classification layer for selected polygons in Greece, Spain, 
Germany and Poland showing extracted values to sample points. 

3.2.2 Area-based assessment 

In a slightly different approach, instead of creating random points in the test sites in 

order to assess the accuracy of the classification map, the whole area of the validation 

sites will be incorporated in the accuracy assessment. In other words, instead of 

comparing specific pixels, we will compare geometries.  

In this case, the ML and nML classification map was converted from raster to polygon 

and these polygons were then overlaid on top of the validation polygons. By applying a 
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simple “intersect” algorithm on these two layers the geometries of agreement and 

disagreement become evident and the features or the portions of the features which 

overlap in all layers and/or feature classes will be written to the output feature class as 

unique features. The outcome of this procedure is a shapefile with four features, 

corresponding to the four agreement/disagreement scenarios between the classified 

map and the reference polygons, and the respective area of each feature is readily 

computed using the “Add Geometry Attributes” ArcGIS tool. 

This procedure was applied to each test country separately and for all of them 

combined as well. 

3.3 Evaluation Metrics 

An error matrix with four outcomes based on the comparison of the classification layer 

and the validation sample was generated for the accuracy assessment of the detection 

methodology applied in the MAIL task 2.3 for each test country. In the main diagonal of 

the error matrix reside the correct classification while in the off-diagonal the omission 

and commission errors are nested (Congalton, 1991). The error matrix is the basis of 

all the evaluation measures of accuracy obtained by the point-based and the area-

based assessment methods. 

The different measures calculated are listed and explained as follows:  

Overall Accuracy (OA) is the ratio between the correctly classified samples to the total 

number of Samples. It essentially tells us what percentage of the reference sites were 

correctly mapped out of all of them. The overall accuracy is commonly given as a 

percentage, with 100 percent accuracy indicating that all reference sites were correctly 

categorized (Congalton, 1991): 

𝑂𝐴 =  
TP +  TN

TP +  TN +  FN +  FP
∗ 100 

User's accuracy (UA) is the proportion of the area mapped as a particular category 

that is actually that category “on the ground” (Congalton, 1991). The user’s accuracy 

can therefore be considered as a measure of the reliability of the map. If a user 

employs the final map in order to locate a particular spatial unit, the user's accuracy 

gives the conditional probability of that map location actually representing the mapped 

unit. It is calculated by dividing the correct classified pixels in a class by the total 

number of pixels that were classified in that class (row total) and multiplying by 100 

(Banko, 1998). 
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The probability of commission error is the complementary measure to user’s accuracy, 

it represents the features of a category on the map that were misclassified and for each 

class, it is calculated as (Finegold et al., 2016): 

error of commission [%] =  100% –  User’s Accuracy [%] 

Producer's accuracy (PA) is the proportion of the area that is a particular category on 

the ground and it is also mapped as that category (Congalton, 1991). The producer's 

accuracy measures how well a given area is classified and provides the producer of the 

final classification map with the conditional probability of a particular location of spatial 

unit appearing as that on the map. It is computed by dividing the number of correct 

pixels in one class by the total number of reference pixels for this class (column total) 

and multiplying by 100 (Banko, 1998). 

Producer's accuracy is the complement of the probability of omission error, which 

represents the proportion of actual features on the ground that are omitted from the 

classification map (Finegold et al., 2016). 

error of omission[%] =  100% – Producer’s Accuracy [%] 

From the binary classification perspective, two similar with UA and PA measures of 

accuracy are sensitivity or recall (also referred as true positive rate or hit rate) and 

precision (also called Positive Predictive Value). 

Sensitivity is calculated as all the positive correctly classified samples divided by the 

total number of positive samples and can be interpreted as the proportion of positive 

samples that were correctly classified (Sokolova et al., 2006). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑟 𝑅𝑒𝑐𝑎𝑙𝑙 =  
TP

TP +  FN
 

Precision denotes the proportion of positive samples that were correctly classified to 

the total number of positive predicted samples (Sokolova et al., 2006). How "precise" is 

the model when predicting a certain class. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP +  FP
 

Since our investigation is targeted at the detection of ML, the ML can be considered as 

our positive sample and the nML as the negative sample. Consequently, sensitivity 

equals UA and precision equals PA for the ML samples. 
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Error rate (ERR) or misclassification rate is the number of misclassified samples 

from both ML and nML classes (Bradley, 1997), which is how often was detection rate 

incorrect. 

𝐸𝑅𝑅 =  
FP +  FN

TP +  TN +  FN +  FP
 

F1-score is also known as F-measure called, and denotes the harmonic mean of 

precision and recall (Sokolova et al., 2006). The value of the F1-score ranges from 

zero to one, and high values of the F1-score show high classification performance. 

𝐹1‐ 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
PREC ∗  REC 

PREC +  REC
 

Matthew’s correlation coefficient (MCC) denotes the correlation between the 

observed and predicted classifications, and it is calculated directly from the error 

matrix. A coefficient of +1 shows a perfect prediction, and −1 denotes total 

disagreement between prediction and true validation values and zero signifies that is 

not better than a random prediction (Matthews, 1975). 

𝑀𝐶𝐶 =
TP ∗  TN − FP ∗  FN

√(TP +  FP) (TP +  FN) (TN +  FP) (TN +  FN)
 

Kappa is a measure of agreement between the predictions and the actual class. It can 

also be a comparison of the overall accuracy to the expected random chance accuracy. 

Because of class imbalance and having just 2 classes and to intelligently nullify the 

dominance of one class while evaluating the layer and validation sample data it is 

necessary to derive the kappa in this task. The Kappa coefficient is computed from the 

following equations (Jensen, 1996; Sim & Wright, 2005): 

𝐾𝑎𝑝𝑝𝑎 =  
accuracy −  expAccuracy

1 −  expAccuracy
 

  

𝑘 =  
𝑁 ∑ 𝑥𝑖𝑖 − ∑ (𝑥𝑖+ ∗ 𝑥+𝑖)𝑟

𝑖=1
𝑟
𝑖=1

𝑁2 − ∑ (𝑥𝑖+ ∗ 𝑥+𝑖)𝑟
𝑖=1

 

Where:  

r = number of rows or columns in the error matrix  

N = total number of observations in error matrix  

Xii = major diagonal element for class i 
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xi+ = total number of observations in row i (right margin)  

x+i = total number of observations in column i (bottom margin) 

The statistical significance of any given classification matrix can also be determined by 

utilizing the Kappa coefficient as a basis. According to Cohen (1960), Kappa can be 

considered as the chance-corrected proportional agreement and takes values from +1 

(perfect agreement) to -1 (complete disagreement). Using these values as references, 

Munoz & Bangdiwala (1997) and Viera & Garrett (2005) developed some guidelines for 

interpreting the Kappa, by quoting Landis & Koch (1977) as shown in Table 4. 

Table 4. Kappa interpretation guidelines of Landis & Koch (1977). 

Kappa statistic Strength of Agreement 

< 0 Poor 

0.01 – 0.20 Slight 

0.21 – 0.40 Fair 

0.41 – 0.60 Moderate 

0.61 – 0.80 Substantial 

0.81 – 1.00 Almost Perfect 

 

3.4 Land Cover Analysis 

After the confusion matrix is tabulated by the agreement/disagreement samples and 

the various accuracy assessment measures have been computed, a final analysis on 

the land cover types of the ML areas took place. For this extra step, we exploited the 

Sentinel-2 Global Land Cover (S2GLC) product. The S2GLC project was founded by 

the European Space Agency (ESA) and was implemented by a consortium led by CBK 

PAN. The S2GLC 2017 product represents a high-resolution land cover classification 

map for most of the European continent. The classification is based on multi-temporal 

Sentinel-2 imagery obtained through 2017 and the dataset is delivered in the native 
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Sentinel 2 spatial resolution of 10 m distinguishing among 13 land cover classes 

(Malinowski et al., 2020). 

The TP, FP, and FN sample points of each country, corresponding to correctly, 

misclassified and omitted ML areas, were then overlaid on the S2GLC map. Following 

the same principle, the validation ML polygons that were digitized by the respective 

experts from each country were overlaid with the S2GLC map and the land cover types 

were extracted. The integration of the S2GLC map into this assessment will allow us to 

conduct a brief analysis and gain an insight into the land cover types that are prevalent 

or associated with MLs, but also to identify potential land cover types that are 

problematic in being identified as ML by the detection methodology. 
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 RESULTS 

The results of the accuracy assessment of the “ML and nML classification” layer from 

MAIL deliverable 2.3 conducted on each of the test countries and the merged layer 

under investigation will be presented in this chapter. For each test site, the generated 

measures of accuracy derived both from the point-based and the area-based 

approaches will be included, which ultimately will provide an insight on how well the 

detection methodology was able to detect MLs.  

4.1 Greece 

The general point-based and area-based results and error matrices for Greece are 

displayed in Table 5 and Table 6. Table 5 shows the error matrix for Greece with four 

outcomes based on a pixel-by-pixel comparison of the classification layer and 

validation samples for the two classes of ML and nML. From the 7,988 samples for ML 

and 5,274 for nML, 5,902 points were correctly classified for the ML and 3,583 for the 

nML. Table 6 displays the area-based error matrix for Greece which shows that 5,877 

ha of ML and 3,504 ha of nML are classified correctly and 1,769 ha of ML and 2,110 ha 

of nML are classified incorrectly. 

Table 5. Point-based error matrix (Greece). 

True/Actual Class (Reference) 

Predicted Class 
(Classified) 

 ML nML Total 

ML 5,902 1,691 7,593 

nML 2,086 3,583 5,669 

Total 7,988 5,274  

 

Table 6. Area-based error matrix (Greece). 

True/Actual Class (Reference) 

Predicted Class 
(Classified) 

 ML nML Total 

ML 5,877 1,769 7,646 

nML 2,110 3,504 5,614 

Total 7,987 5,273  
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From the correctly classified and incorrectly classified samples, the TP, TN, FP, and 

FN samples have been derived and the different accuracy metrics such as Producer’s 

Accuracy, User’s Accuracy, F1-score (Table 7), Overall Accuracy, Error Rate, Kappa 

and Matthew’s correlation coefficient (Table 8) have been computed. 

Table 7. Class statistics (Greece). 

Assessment Class PA (%) UA (%) 
F1-score 

(%) 

Point-based 
ML 73.89 77.73 75.76 

nML 67.94 63.20 65.49 

Area-based 
ML 73.58 76.86 75.19 

nML 66.45 62.42 64.37 

 

Analysing the results from the error matrix of point-based assessment, the values for 

UA, PA and F1-score obtained for the ML class are 77.73%, 73.89% and 75.76%, 

respectively, indicating that the percentage of ML class correctly detected to the total 

number of reference ML areas was good and the detection methodology was relatively 

precise in detecting ML class. On the other hand, the results of the area-based error 

matrix show a slight decrease compared with the point-based assessment. UA, PA and 

F1-score for ML are 76.86%, 73.58% and 75.19%. 

Table 8. Overall statistics (Greece). 

Assessment OA (%) ERR (%) Kappa MCC 

Point-based 71.52 28.48 0.41 0.41 

Area-based 70.75 29.25 0.40 0.40 

 

Table 8 shows that overall accuracy of 71.52% and 70.75% was achieved by the 

detection methodology from the point-based and area-based methods with an overall 

error rate of 28.48% for the first and 29.25% for the second. The MCC of 0.41 and 0.40 

and kappa of 0.41 and 0.40 of the above tables show a positive correlation and 

moderate agreement between the reference and classified classes. 
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4.2 Spain 

Table 9 and Table 10 show the error matrix for Spain with four outcomes based on a 

point-based and area-based comparison of the classification layer and the reference 

“ground truth” data for the two classes of ML and nML. 

Table 9. Point-based error matrix (Spain). 

True/Actual Class (Reference) 

Predicted Class 
(Classified) 

 ML nML Total 

ML 1,396 406 1,802 

nML 253 1,793 2,046 

Total 1,649 2,199  

 

Table 10. Area-based error matrix (Spain). 

True/Actual Class (Reference) 

Predicted Class 
(Classified) 

 ML nML Total 

ML 1,409 398 1,807 

nML 240 1,800 2,040 

Total 1,649 2,198  

 

From the 1,649 random samples for ML and 2,199 for nML, 1,396 points were correctly 

classified for the ML and 1,793 for the nML. For the area-based assessment 1,409 ha 

of ML and 1,800 ha of nML are correctly classified. As a result, the total number of 

correctly classified samples for ML and nML for point-based assessment is 3,189 and 

for area-based assessment is 3,209 ha (Table 9 and Table 10).  

From the correctly and incorrectly classified samples, of point-based and area-based 

assessments, the values of TP, TN, FP, and FN samples have been derived and the 

values of the various accuracy metrics were calculated (Table 11). Analysing the 

results from the error matrix, the values for precision (UA), recall (PA) and F1-score 

obtained for the class of ML, are 77.47%, 84.66% and 80.90%, respectively for the 

point-based and 77.98%, 85.45% and 81.54% for the area-based approach, confirming 

that in both cases the total sample of reference ML samples was sufficient, and the 

detection methodology was quite precise in detecting the ML class.  
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Table 11. Class statistics (Spain). 

Assessment Class PA (%) UA (%) F1-score 
(%) 

Point-based 
ML 84.66 77.47 80.90 

nML 81.54 87.63 84.48 

Area-based 
ML 85.45 77.98 81.54 

nML 81.89 88.24 84.95 

Table 12 shows that the overall accuracy of the whole detection methodology with the 

provided validation data was 82.87% for the point-based method and 83.42% for the 

area-based method, with an overall error rate of 17.13% and 16.58% respectively, 

which are rather positive results considering the high accuracy and low error rate. The 

MCC of 0.66 in the first case and 0.67 for the second and kappa of 0.65 and 0.67 in the 

tables above show a relatively positive correlation and moderate agreement between 

the validation and predicted classes. 

Table 12. Overall statistics (Spain). 

Assessment OA (%) ERR (%) Kappa MCC 

Point-based 82.87 17.13 0.65 0.66 

Area-based 83.42 16.58 0.67 0.67 

4.3 Germany 

Table 13 and  

Table 14 show the error matrix for Germany, with four outcomes based on a point-

based and an area-based comparison of the classification layer and the validation data 

for the two classes of ML and nML. 

Table 13. Point-based error matrix (Germany). 

True/Actual Class (Reference) 

Predicted Class 
(Classified) 

 ML nML Total 

ML 317 8,436 8,753 

nML 35 12,477 12,512 

Total 352 20,913  
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Table 14. Area-based error matrix (Germany). 

True/Actual Class (Reference) 

Predicted Class 
(Classified) 

 ML nML Total 

ML 311 8,509 8,820 

nML 40 12,403 12,443 

Total 351 20,912  

 

From the 352 random samples for ML and 20,913 for nML, 317 samples were correctly 

classified for the ML and 12,477 for the nML. Also, quite close to these results the 

area-based error matrix shows that from 351 ha of ML and 20,912 ha of nML, the 

correctly classified hectares were 311 for ML and 12,403 for nML. The evident 

difference in ML and nML class is due to the provided validation data in subchapter 

3.1.1. As a result, the total number of correctly classified samples for ML and nML were 

12,794 for point-based assessment and 12,714 ha for area-based assessment. 

Table 15. Class Statistics (Germany). 

Assessment Class PA (%) UA (%) F1-score 
(%) 

Point-based 
ML 90.06 3.62 6.96 

nML 59.66 99.72 74.66 

Area-based 
ML 88.60 3.53 6.78 

nML 59.31 99.68 74.37 

From the correctly classified and incorrectly classified samples, the values of TP, TN, 

FP, and FN samples were derived and the values of the different calculated accuracy 

metrics from the subchapter 3.3 are displayed below (Table 15 and Table 16). 

Analysing the results of the point-based error matrix, the values for UA, PA and F1-

score obtained in the class ML, are 3.62%, 90.06% and 6.96%, and that of the nML of 

99.72%, 59.66%, and 74.66% respectively. And for area-based assessment UA is 

3.53% for ML and 99.68% for nML, PA is 88.6% for ML and 59.31% for nML, and F1-

score is 6.78% for ML and 74.37% for nML. The very low precision, F1-score of the ML 

class for Germany might be as a result of an error in the validation data or class 

imbalance as the nML class validation data were larger than the ML class, this can also 

be seen from the very low kappa of 0.04, in both assessments, low agreement between 
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the predicted and the actual class. It was not able to completely nullify the influence of 

the large nML class, the MCC further proofs that by showing a very low correlation 

between the predicted and the actual class. 

Table 16. Overall statistics (Germany). 

Assessment OA (%) ERR (%) Kappa MCC 

Point-based 60.61 39.84 0.04 0.13 

Area-based 59.79 40.21 0.04 0.13 

Table 16 shows that the overall accuracy of the whole detection methodology with the 

provided validation data for Germany was 60.61% for the point-based assessment 

method and 59.79% for the area-based assessment method. 

4.4 Poland 

Table 17 and Table 18 show the error matrices for Poland with four outcomes based on 

the point-based and area-based comparison of the classification layer and the 

Validation data for the two classes of ML and nML. From the 539 random samples for 

ML and 2,463 for nML, 292 points were correctly classified for the ML and 2,439 for the 

nML. From the 538 ha of ML and 2,461 ha of nML, the area which is correctly classified 

for ML covers 284 ha and for nML 2,432 ha. 

Table 17. Point-based error matrix (Poland). 

True/Actual Class (Reference) 

Predicted Class 
(Classified) 

 ML nML Total 

ML 292 24 316 

nML 247 2,439 2,686 

Total 539 2,463  

Table 18. Area-based error matrix (Poland). 

True/Actual Class (Reference) 

Predicted Class 
(Classified) 

 ML nML Total 

ML 284 29 313 

nML 254 2,432 2,686 

Total 538 2,461  
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The total number of correctly classified point samples for ML and nML is 2,739 and of 

incorrectly classified points is 271, while for the area-based assessment 2,722 ha were 

correctly and 283 ha incorrectly classified.  

From the correctly classified and the misclassified samples for Poland the values of TP, 

TN, FP, and FN samples and the values of the accuracy metrics explained in 3.3 were 

derived respectively in Table 19 and Table 20. Analysing the results from the error 

matrix of point-based assessment, the values for UA, PA and F1-score obtained in the 

class ML, are 92.41%, 54.17%, and 68.3%, and that of the nML of 90.8%, 99.03%, and 

94.74% respectively. The analysis of the results of area-based assessment for the 

same metrics are 90.74%, 52.79% and 66.75% for ML and for nML are 90.54%, 

98.82% and 94.5%. Indicating that the percentage of ML class correctly detected to the 

total sample of ML validation samples was adequate and the detection methodology 

was very precise in detecting ML class in both assessments.  

Table 19. Class statistics (Poland). 

Assessment Class PA (%) UA (%) F1-score 
(%) 

Point-based 
ML 54.17 92.41 68.30 

nML 99.03 90.80 94.74 

Area-based 
ML 52.79 90.74 66.75 

nML 98.82 90.54 94.50 

 

Table 20 shows that the overall accuracy of the whole detection methodology with the 

provided validation data was 90.97% for the point-based assessment and 90.56% for 

the area-based assessment with an overall error rate of 9.03% and 9.44% respectively, 

which are positive results considering the high accuracy and the low error rate. The 

MCC of 0.67 and 0.65 and kappa of 0.64 and 0.62 show a relatively positive correlation 

and agreement between the reference and predicted classes. 

Table 20.Overall statistics (Poland). 

Assessment OA (%) ERR (%) Kappa MCC 

Point-based 90.97 9.03 0.64 0.67 

Area-based 90.56 9.44 0.62 0.65 
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4.5 Merged 

Merging the data of Greece, Spain, Germany and Poland, two fusion error matrices 

were tabulated based on the point- and area-based assessment results, comparing the 

classification layer and validation samples for the two classes of ML and nML, and are 

displayed below (Table 21 and Table 22). From the 10,529 stratified random samples 

for the ML and the 30,849 for the nML, 7935 points were correctly classified as ML and 

20,195 as nML. Overlaying the reference polygons on the prediction map, out of the 

10,528 ha of ML, 7,882 ha were classified correctly and out of the 30,848 ha of nML, 

20,141 ha were correct. 

Table 21.  Point-based error matrix (Merged). 

True/Actual Class (Reference) 

Predicted Class 
(Classified) 

 ML nML Total 

ML 7,935 10,654 18,589 

nML 2,594 20,195 22,789 

Total 10,529 30,849  

 

Table 22. Area-based error matrix (Merged). 

True/Actual Class (Reference) 

Predicted Class 
(Classified) 

 ML nML Total 

ML 7,882 10,707 18,589 

nML 2,646 20,141 22,787 

Total 10,528 30,848  

From the correctly classified and incorrectly classified samples, of both approaches, 

the values of TP, TN, FP, and FN samples were derived, and the computed measures 

of accuracy are displayed in Table 23. Analysing the results from the error matrix, the 

values of UA, PA and F1-score that was achieved for the class of ML, are 42.69%, 

75.36% and 54.5%, respectively based on the points evaluation and 42.4%, 74.87% 

and 54.14% based on the area evaluation. 
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Table 23. Class statistics (Merged). 

Assessment Class PA (%) UA (%) F1-score 
(%) 

Point-based 
ML 75.36 42.69 54.50 

nML 65.46 88.62 75.30 

Area-based 
ML 74.87 42.40 54.14 

nML 65.29 88.39 75.10 

 

The Overall Accuracy for the point-based assessment applied on the merged sites is 

67.98%, which is slightly higher than area-based assessment which is 67.73% (Table 

24). The Error rate of the first assessment is 32.02% while in the second one is 

32.27%. MCC and Kappa in both assessments seem to be influenced by German’s 

results, having a rate of 0.33 and 0.32 for kappa and 0.36 and 0.35 for MCC. 

Table 24.Overall statistics (Merged). 

Assessment OA (%) ERR (%) Kappa MCC 

Point-based 67.98 32.02 0.33 0.36 

Area-based 67.73 32.27 0.32 0.35 

4.6 Land Cover Analysis 

Initially, the class statistics of the ML areas derived from the confusion matrix (TP, FP, 

FN) were overlaid with the S2GLC product map. This way, we can identify which types 

of land cover were correctly classified as ML, which were mistakenly classified as ML, 

and which even though they were validated as ML from the project partners, the 

detection methodology failed to classify them as marginal. 
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Figure 10.Distribution of TP samples from error matrix over S2GLC (in %). 

The results of the analysis of ML error matrix with S2GLC in Figure 10 show that the 

majority of TP samples, which are the correctly classified samples of ML based on the 

provided validation data, are associated with herbaceous vegetation land cover for 

Greece (51.45%), Spain (44.20%), and for Poland (96.58%). For Germany, the majority 

of the TP points are on the land cover classes of moors and heathland (49.53%) and 

on natural material surface (42.27%). 
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Figure 11. Distribution of FP samples from error matrix over S2GLC (in %). 

The FP (Figure 11. Distribution of FP samples from error matrix over S2GLC (in %).), 

which are the nML samples incorrectly classified as ML, are also within the herbaceous 

land cover class for Greece (51.45%) and Poland (37.5%), however for Poland a 

significant percent is also within the coniferous tree land cover (33.3%). For Spain, the 

FP samples reside on the broadleaf tree (26.35%) and herbaceous vegetation 

(25.12%) land cover, while for Germany they are found on other land cover types like 

natural material surfaces (37.75%) and moors and heathland (30.08%), which are quite 

consistent with the TP samples. 
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Figure 12. Distribution of FN samples from error matrix over S2GLC (in %). 

The FN, which are ML samples incorrectly classified as nML, seem to be distributed 

across all land cover classes with Greece noting a pick in the herbaceous land cover 

class (51.45%) and Poland exhibiting the majority of the FN samples on the marshes 

land cover type (76.92%), as shown in Figure 12. This misclassification might be 

attributed to various reasons, as discussed in chapter 2 “Literature review”, like an 

inherent error in the input data of the detection methodology. Another potential source 

of error could be the difference in the dates between the reference data collection and 

the generation of the S2GLC product, which was produced in 2017 and is the basemap 

that produced the ML and nML classification layer. 

Further exploiting the S2GLC product and the validation data that were offered from the 
respective project partners, the S2GLC map was intersected with the ML validation 

polygons and the land cover types of the ML polygons were extracted. The total area of 
each land cover is presented in the following table in ha, grouped by country ( 

 

 

 

Table 25). 
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Table 25. Land cover class sizes of provided ML validation data areas over the S2GLC. 

Land Cover Class sizes of ML area over S2GLC (in ha) 

Code Class Name Greece Spain Germany Poland 

62 
Artificial surfaces and 

constructions 
21.89 3.09 25.42 0.53 

73 Cultivated areas 269.3 54.56 9.75 24.91 

75 Vineyards 196.71 9.84   

82 Broadleaf tree cover 14.47 90.19 3.66 7.41 

83 Coniferous tree cover 2.6 27.78 5.36 0.45 

102 Herbaceous vegetation 5,911.83 649.53 4.33 313.56 

103 Moors and Heathland 31.34 306.42 162.28  

104 Sclerophyllous vegetation 314.41 428.97   

121 Natural material surfaces 1,105.87 74.39 132.05 2.01 

 Total 7,868.42 1,644.77 342.85 348.87 

 

The result of the analysis of the ML class validation data areas with land S2GLC, 

revealed that the majority of the ML areas were over the herbaceous vegetation land 

cover in Greece (75.13%), Spain (39.49%), and Poland (89.88%) (Figure 13). In 

addition, another 26% of Spain’s reference ML areas is found on sclerophyllous 

vegetation. Likewise, the validation data provided for Germany lie predominantly on 

moors and heathland (47.33%) and on natural material surfaces (38.52%) land cover. 
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Figure 13. Distribution of land cover class sizes of provided ML validation data areas 
over S2GLC (in %). 
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 DISCUSSION 

5.1 Interpretation of the accuracy estimates 

The comparison of the two types of accuracy assessment techniques is carried out 

below with the calculated metrics from both error matrices Table 27 as well as Table 26 

which compares the hectares of ML for each country. 

Table 26. Comparison of predicted and reference ML classes. 

Area of ML 
in ha 

Greece Spain Germany Poland Merged 

Predicted 
(area-based) 

7,646 1,807 8,820 313 18,589 

Reference 7,987 1,649 351 538 10,529 

 

Table 26 represents the area of the predicted ML from the area-based assessment and 

of the reference data provided by the project partners. The predicted area from the 

area-based assessment was chosen since, unlike the stratified random sampling, the 

intersection of the reference and classified polygons, make use of the total area under 

study. This table shows that the model in some cases overestimates and in some 

underestimates the true area of ML. In the case of Greece, the model underestimated 

the ML area by 341 ha. Same as Greece, Poland’s true ML area is underestimated by 

225 ha. On the other hand, Spain’s and Germany’s actual ML areas were 

overestimated by the 2.3 methodology model by 158 and 8,469 ha, respectively. 

Germany exhibits a significant and disproportional deviation from the reality, which 

affects the prediction of the merged countries, which overall present an overestimation 

of the true area of 8,060 ha. 
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Table 27. Results summary for ML of each country. 

Metric of 
accuracy 

Greece Spain Germany Poland Merged 

Point-
based 

Area-
based 

Point-
based 

Area-
based 

Point-
based 

Area-
based 

Point-
based 

Area-
based 

Point-
based 

Area-
based 

OA (%) 71.52 70.75 82.87 83.42 60.61 59.79 90.97 90.56 67.98 67.73 

UA (%) 77.73 76.86 77.47 77.98 3.62 3.53 92.41 90.74 42.69 42.40 

PA (%) 73.89 73.58 84.66 85.45 90.06 88.60 54.17 52.79 75.36 74.87 

F1-
SCORE 

75.76 75.19 80.90 81.54 6.96 6.78 68.30 66.75 54.50 54.14 

ERR (%) 28.48 29.25 17.13 16.58 39.84 40.21 9.03 9.44 32.02 32.27 

KAPPA 0.41 0.40 0.65 0.67 0.04 0.04 0.64 0.62 0.33 0.32 

MCC 0.41 0.40 0.66 0.67 0.13 0.13 0.67 0.65 0.36 0.35 
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Table 27 presents the summary of the results of all the metrics examined, for both 

assessments (point-based and area-based) for each country. It indicates the results of 

the ML as these are the areas of interest. Concerning the ML areas in hectares, it is 

visible that Greece is tested -with a significant difference- the biggest number of 

hectares of ML followed by Spain, Germany and Poland. This difference of hectares 

between the countries is remarkable as the reference area of ML of Greece is almost 

four times bigger than Spain’s, 14 times bigger than Germany’s and 20 times bigger 

than Poland’s.  

“There is no general rule as to which level of accuracy is good and which is not. 

Judgment on the data validity depends on the purpose of the map and thus needs to 

be dealt with on a case-by-case basis.”(Finegold et al., 2016).Table 27 illustrates the 

OA of each country, showing that Poland had the higher percentage of OA which 

means that Poland had the greatest correctly classified proportion out of all reference 

polygons. Poland is followed by Spain, Greece and German with the last one having 

the lowest OA. The OA may have been significantly influenced by the ML and nML 

classification layer detection methodologies' input data, as well as the quality of the 

validation data areas provided. The different input data utilized in the detection 

methodology for the delineation of forests, croplands, protected areas, impervious, 

changed areas, and other land covers also had an overall accuracy less than 100 

percent. As a result, this potential error is expected to have influenced the overall 

accuracy result of the accuracy assessment. Furthermore, as the S2GLC, which is the 

detection methodology's basemap, was produced in 2017, and the validation data for 

the assessment were all acquired in 2021, there is a substantial gap in the elapsed 

time between the produced classified layer and the validation data. As a result, some 

land use and/or land cover may have changed, which introduces an additional source 

of error, thus significantly influencing the result of the overall accuracy of the accuracy 

assessment. 

The producer’s accuracy is based on the producer's classification point of view, while 

the user’s accuracy shows the reality on the ground. In this case, there is a substantial 

contrast between the countries. The PA shows a high percentage for Germany and a 

moderate one for Poland, while UA an extremely low percentage for Germany and 

great one for Poland. Greece and Spain’s PA and UA are almost similar and above 

70% in both cases. 
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Regarding the ERR, Poland has a minimum error rate followed by Spain, Greece and 

Germany. German reaches a 40% of the ERR which is bigger than the other countries’ 

but still is a fair rate. 

The F1-score is a metric that implies how accurate a model is and depending on UA 

and PA, in this case, the accuracy assessments of Spain and Greece are showing a 

substantial accuracy. Poland is following with a fair percentage of accuracy, and last 

Germany with a very low percentage of accuracy. 

According to Table 4 and Table 27 kappa shows a substantial agreement for Spain and 

Poland and a moderate agreement for Greece. On the other hand, Germany shows a 

slight agreement confirming once again the deficiency in the country’s data. 

Last but not least, MCC of Spain and Poland have an equal and quite high correlation 

between predicted and actual classes, followed by Greece and Germany with the last 

showing a very low correlation. 

From the analysis, it is evident that the results of the merged countries are influenced 

by the lack of ML data in Germany. The inconsistency observed in the values of the 

accuracy assessment measures between the four countries under investigation was 

due to the validation data. Different issues occurred with the validation data: 

• Different methods are used by different experts in each country in acquiring 

data. 

• Large differences in the amount of validation data areas provided by each 

country. 

• Class imbalance. 

• Determining sample size for the accuracy assessment. 

These differences in accuracy measures in each country can be lowered by deriving a 

standard procedure for acquiring the validation data areas for accuracy assessment or 

by being acquired from field measurements of the test areas. The use of an equal 

amount of validation data areas in each country will also prevent this inconsistency 

significantly. Also, class imbalance concerns, if avoided, could improve value 

discrepancies by using nearly equal or equal extents of ML and nML class areas. For 

example, in Germany, the ML class area was 352 ha while the nML class area was 

20,913 ha in this case, the dominating effect of the majority nML class will have a 
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significant effect on the final assessment measures. Compared to Greece, the 

difference was not as large as 7,988 ha of ML and 5,274 ha of nML was provided, the 

dominating effect of the majority ML class will not be as significant.  

By considering the proportional allocation of the total sample size, defining a standard 

procedure or methodology of determining sample size will also standardize the 

accuracy assessment procedure and bring conformity to the values. 

5.2 Reasons for difference in land cover class peculiar with ML 

The land cover analysis conducted between the ML validation sites and the S2GLC 

layer identified that the ML areas were over different land cover types. The majority of 

the ML reference sites in Greece, Spain, and Poland were in the herbaceous land 

cover, while in Germany they were over the moors and heathland, as well as over the 

natural material surfaces land cover categories of the S2GLC map. The differences are 

attributed to the different types of land use and land cover areas that are associated 

with ML provided by each project partner in their respective country for the accuracy 

assessment. This could be a result of the difference in climate or in which areas are 

protected by national laws. More specifically, Greece and Spain have mostly 

Mediterranean climate, while Poland and Germany mostly temperate. For instance, 

most of the ML areas in Poland are a result of the abandonment of agricultural fields, 

which is not the case in Greece, Spain, or Germany.  

According to the S2GLC documentation, the herbaceous land cover is defined as 

‘’Lands covered by herbaceous vegetation including both natural low productivity 

grassland and managed grassland used for grazing and/or mowing’’, hence these are 

potential areas that can be reforested for carbon sequestration. While most of the 

areas provided as ML validation data for Greece and Spain were similar with the ones 

provided for Germany, a significant proportion of the later was defined as protected 

areas by national law and the provided ML sites were from previous mines and 

extraction sites. 

A peculiarity with the ML of Germany is that many areas of herbaceous vegetation are 

under one form of protection (mostly for Flora and Fauna), thus cannot be reforested. 

This is why we identify most of ML areas are under moors and heathland, which 

according to the S2GLC definition are ‘’Low growing vegetation with closed cover and 

with predominately shrub and bushy vegetation’’. According to literature, such areas 

might also get classified in the near future as protected areas, consequently, any 



[D2.4] Report on Accuracy assessment  
 
 

 

[59|78] 

reforestation can hardly occur there. This is according to the 2002 Federal Nature 

Conservation Act that created a new statutory requirement for the Länder (states) to 

set up a network of interlinked biotopes covering at least 10 percent of their area 

(Section 21 of the Act). The next predominant ML land cover type provided by the 

German partners is the natural material surfaces, which usually consist of former large 

mines or mineral extraction sites (e.g., Nochten area in Saxony), for which reforestation 

strategies of significant extent are already planned. 

 CONCLUSIONS 

In order to quantify the ML and nML classification layer data that would allow users to 

understand the performance of the detection methodology, as well as provide 

guidelines for the validation of the products, based on provided validation dataset from 

project partners, a point-based and an area-based accuracy assessment method was 

performed for the ML and nML classification layer products that cover validation sites in 

Greece, Spain, Germany and Poland in the EU. The results indicated that from the 

provided validation data areas Poland had the highest overall accuracy for both the 

point-based and the area-based accuracy assessment methods of (90.97% and 

90.56%) followed by Spain (82.87% and 82.42%), then Greece (71.52% and 70.75%) 

and Germany (60.61% and 59.79%). The results of the area-based assessment 

indicated that the ML area in Greece was underestimated by 341 ha and in Poland by 

225 ha, while in Spain they were overestimated by 158 ha and in Germany by 8,469 

ha. Generally, the ML areas for all testing sites were overestimated by 8,060 ha. 

Analysis of the error matrix and provided validation data areas with the S2GLC, 

showed that in Greece, Spain and Poland majority of the ML areas were over the 

Herbaceous land cover class while in Germany it was the Moors and Heathland, and 

Natural Material Surfaces land cover classes.   
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 ANNEX I: INITIAL APPROACH 

8.1 Datasets 

8.1.1 Testing sites 

The testing sites included in the MAIL project present a variety of geomorphology and 

land cover types. They are located in 4 different countries, in south Europe on the 

Iberian Peninsula (Spain) and on the Balkan peninsula (Greece), and in north 

European plain (Germany and Poland). 

The total number of testing sites in each country is as follows: 

• 3 testing sites in Spain (Sierra de Espadán, Nogueruelas and Terras Atlas). 

• 2 testing sites in Greece (Thessaloniki and Komotini). 

• 2 testing sites in Germany (Nochten/Reichwalde and Welzow). 

• 1 testing site in Poland. 

Testing sites in Spain 

The testing site of Sierra de Espadán covers a total area of 763.22 km² and is located 

nearly 40 km north of the city of Valencia, in the eastern Spain province of Castellón. 

The altitude ranges between 250 and 1,000 m above sea level. The area is mainly 

characterized by forest (the Natural Park of Sierra de Espadán), heathland and 

cultivated areas. The Natural Park of Sierra de Espadán is a Mediterranean forest with 

soft and rounded hills, presence of abandoned farming with artificial terraces, and 

mountain peaks up to 1,100 m of altitude. The Natural Park displays a heterogeneous 

landscape dominated by pure and mixed native coniferous and deciduous forests, with 

species of Pinus and Quercus (Torralba et al., 2018) 

The testing site of Nogueruelas covers a total area of 42 km² and is located north of 

the municipality of Nogueruelas (Teruel) about 65 km from the city of Teruel. This is an 

eminently forested area located in the heart of Sierra de Gúdar. The altitude of the 

study area ranges between 600 and 1,800 m above sea level. The slopes in the study 

area are gentler than in the environment due to the fact that the mountain is located in 

areas of high plateaus, with the appearance of gentle slopes. The area is mainly 

characterized by forest and heathland. 
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The testing site of Terras Atlas covers a total area of 1,100 km² and is located nearly 

210 km northeast of the city of Madrid. The altitude of the study area ranges between 

900 and 1600 m above sea level. The area is mainly characterized by forest, heathland 

and cultivated areas. 

Testing sites in Greece 

The testing site of Thessaloniki covers a total area of 96.63 km² and is located nearly 

15 km east of the city of Thessaloniki. The altitude varies significantly from 70 m (the 

relatively flat lowland area in the southeast which includes cultivated areas) to 1,100m 

(the mountainous area in the northwest which includes low vegetation areas and 

natural material surfaces) above sea level. The area is mainly characterized by 

heathland, forest and cultivated areas. 

The testing site of Komotini covers a total area of 79.93 km² and is located nearly 15 

km south of the city of Komotini. The altitude varies significantly from 50 m (the 

relatively flat lowland area in the southwest which includes cultivated areas) to 500 m 

(the mountainous area in the northeast which includes low vegetation areas and 

natural material surfaces) above sea level. The area is mainly characterized by 

heathland, forest and cultivated areas. 

Testing sites in Germany 

The testing site of Nochten/Reichwalde covers a total area of 1,042.15 km² and is 

located nearly 60 km northwest of the city of Dresden. The altitude does not vary 

considerably from 120 to 160 m above sea level. The area is mainly characterized by 

heathland, forest, lakes, opencast mining areas and military training areas. Only a very 

small extent of protected areas exists. In the context of the MLs definition especially 

post-mining areas are relevant. 

The testing site of and Welzow covers a total area of 224.43 km² and is located nearly 

65 km northwest of the city of Dresden. The altitude varies from 40 to 140 m above sea 

level. The area is mainly characterized by heathland, forest, cultivated areas and 

opencast mining areas. 

Testing sites in Poland 

The testing site of Poland covers a total area of 480.77 km² and is located nearly 190 

km south of the city of Warsaw. The altitude does not vary considerably and ranges 

between 150 (the relatively flat lowland area in the southeast which includes mainly 
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cultivated areas) and 220 m (the flat lowland area in the northwest which includes also 

cultivated areas) above sea level. The area is mainly characterized by cultivated areas 

and forest. 

8.1.2 Final Layer 

The geodatabase, Final Map Layer (layer FINAL_ML, see MAIL deliverable .2.3), 

including the estimated MLs of the testing sites, was reclassified to 3 classes: (I) 

Marginal Lands, (II) Potential Marginal Lands and (III) Unsuitable Lands.  

According to the methodology that was followed in deliverable 2.3 of the MAIL project, 

the surface area and the percentage of the area that was classified as ML in the 

assessed testing sites (Greece, Germany and Poland), presents a significant variability 

(Table 28). 

Table 28. Total surface of testing sites and estimated MLs. 

 
Testing 

site 

Marginal 

lands (1) 

Potential 

marginal 

lands (2) 

Unsuitable 

lands (3) 

SUM 

(1),(2),(3) 
Percentage 

 (km²) (km²) (km²) (km²) (km²) (%) 

GREECE - 

Thessaloniki 
96.63 7.02 0.14 2.06 9.22 9.53 

GREECE - Komotini 79.93 3.15 0.04 0.72 3.91 4.89 

GERMANY - 

Nochten/Reichwalde 
1,042.15 0.97 0.02 0.16 1.15 0.11 

POLAND 480.77 0.36 0.09 0.17 0.62 0.13 

The class ‘Marginal Lands’ includes: Herbaceous vegetation, moors and heathland, 

sclerophyllous vegetation, natural material surfaces. The class ‘Potential Marginal 

Lands’ (Supra-marginal agricultural lands) includes cultivated areas and vineyards. The 

class ‘Unsuitable Lands’ includes artificial surfaces and constructions, broadleaf tree 

cover and coniferous tree cover. 

8.1.3 Reference Data 

Ground truth data can be collected in the field (field-verified ground reference locations 

e.g., ground truth with GPS). However, this is time consuming and expensive. Ground 

truth data can also be derived from interpreting high-resolution imagery, existing 
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classified imagery, or GIS data layers (pixels as references visually identified from the 

imagery e.g., aerial photo interpretation). In the MAIL project, the Imagery (WGS84) 

was used as reference data/basemap using ArcGIS Online from Esri. 

The web map (WGS84), used as basemap using ArcGIS Online from Esri, features 

satellite imagery for the world and high-resolution aerial imagery for many areas. It 

uses WGS84 Geographic, version 2 tiling scheme. World Imagery (WGS84) provides 

one meter or better satellite and aerial imagery in many parts of the world and lower 

resolution satellite imagery worldwide. The map includes 15 m TerraColor imagery at 

small and mid-scales (~1:591 M down to ~1:72 k) and 2.5 m SPOT Imagery (~1:288 k 

to ~1:72 k) for the world. The map features 0.3 m resolution imagery in the continental 

United States and parts of Western Europe from Maxar. Additional Maxar sub-meter 

imagery is featured in many parts of the world. In the United States, 1 meter or better 

resolution NAIP imagery is available. In other parts of the world, imagery at different 

resolutions has been contributed by the GIS User Community. In select communities, 

very high-resolution imagery (to 0.03 m) is available down to ~1:280 scale. 

“ArcGIS Online Basemaps” features a variety of basemaps that can be accessed from 

ArcGIS Online. This includes basemaps from Esri and OpenStreetMap. The basemaps 

(World Imagery, World Street Map, National Geographic World Map, World 

Topographic Map, Streets, Navigation etc.) can be used as foundation layers to 

support a range of web maps or web mapping applications. In the MAIL project, apart 

from the Imagery (WGS84) that was used as basemap using ArcGIS Online from Esri, 

the World Topographic Map was also used to identify the testing sites. 

8.2 Methodology 

The basic steps of the methodology applied to testing sites is as follows in the workflow 

below. 
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Figure 14. Initial approach workflow. 

8.2.1 Sampling Strategy 

The sampling scheme, the choice and distribution of samples, is an important part of 

the accuracy assessment. Selection of the proper scheme is critical to generate an 

error matrix that is representative of the entire map. The sample must be selected 

without bias. Failure to meet this important criterion affects the validity of any further 

analysis performed because the resulting error matrix may overestimate or 

underestimate the true accuracy. 

The sampling strategy that is applied here is stratified random sampling. In this 

process, the study area is split into strata and random samples are generated within 

each stratum. Strata can be adjusted based on prior knowledge about the study area in 

order to divide the area into groups or strata and then each stratum is randomly 

sampled. Then the map is being stratified into map classes.  
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In the MAIL project, the creation of randomly sampled points for the accuracy 

assessment was made using the Create Accuracy Assessment Points tool in ArcGIS 

pro. This tool creates a set of random points and assigns a class to them based on 

reference data. The points creation is dispersed randomly inside each class, with the 

number of points proportionate to the relative area of each class. The total number of 

random points that will be generated, depending on sampling strategy and the number 

of classes, can be selected. The default number of randomly generated points is 500. 

8.2.2 Evaluation 

The randomly generated points for the accuracy assessment of MLs (Marginal Lands, 

Potential Marginal Lands, Unsuitable Lands and Excluded Areas) of the testing site 

were compared to the same locations (the pixels as references visually identified from 

the aerial imagery) using the web map (WGS84) in ArcGIS pro (Figure 15). 

 

Figure 15. Manually assign classes (GroundTruth) to the generated points for the 
accuracy assessment of ML of the testing site in Greece (Komotini) (Basemap: ArcGIS 

Online from Esri). 

 

The creation of error matrix for the Accuracy Assessment of ML of the testing sites 

consisted of the computation of the percent accuracy for each informational class 
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(Marginal Lands, Potential Marginal Lands, Unsuitable Lands and Excluded Areas), the 

user’s accuracy and the producer’s accuracy, the overall-total accuracy (average 

summary value) and the calculation of Kappa (Figure 16). 

 

Figure 16. Creation of error matrix for the accuracy assessment of ML of the testing site 
in Greece (Komotini) (Basemap: ArcGIS Online from Esri). 

The error matrix Table for each testing site was converted to an Excel file in order to 

further clarify the information about the classes (Marginal Lands, Potential Marginal 

Lands, Unsuitable Lands and Excluded Areas) for the Accuracy Assessment of the 

testing site. 

8.3 Results 

The evaluation of the Accuracy Assessment of the testing sites consists of the 

interpretation of the error matrix table (the user’s accuracy, the producer’s accuracy 

and the overall-total accuracy) and for each testing site is as follows: 

8.3.1 Greece - Thessaloniki 

 

Figure 17. The error matrix table in the excel file of the testing site in Greece 
(Thessaloniki). 

The error matrix of this testing site (Thessaloniki) indicates an overall accuracy of 

84.28%. However, producer’s accuracies range from just 27.40% (“Marginal Lands”) to 

100% (“Unsuitable Lands”) and user’s accuracies vary from 36.65% (“Unsuitable 

Lands”) to 87.83% (“Excluded areas”). At this point, it is important to appreciate the 

need for considering overall, producer’s, and user’s accuracies simultaneously. In this 
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example, the overall accuracy of the classification is 84.28% (a quite good accuracy). 

However, as the primary purpose of the classification is to map the locations of the 

“Marginal Lands” category, we note that the producer’s accuracy of this class is not 

good at all (27.40%) and the user’s accuracy for this class is only 55.56%. That is to 

say, only 27.40% of the MLs have been correctly identified as “Marginal Lands” and 

55.56% of the areas identified as “Marginal Lands” within the classification are truly of 

that category. The only highly reliable category associated with this classification from 

both a producer’s (94.75%) and a user’s (87.83%) perspective is “Excluded areas”. 

8.3.2 Greece - Komotini 

 

 Figure 18. The error matrix table in the excel file of the testing site in Greece (Komotini). 

The error matrix of this testing site (Komotini) indicates an overall accuracy of 90.50%. 

However, producer’s accuracies range from just 25.00% (“Marginal Lands”) to 100% 

(“Unsuitable Lands” and “Potential Marginal Lands”) and user’s accuracies vary from 

10.00% (“Potential Marginal Lands”) to 94.32% (“Excluded areas”). In this example, the 

overall accuracy of the classification is 90.50% (a good accuracy). However, as the 

primary purpose of the classification is to map the locations of the “Marginal Lands” 

category, we note that the producer’s accuracy of this class is not good at all (25.00%) 

and the user’s accuracy for this class is only 55.00%. That is to say, only 25.00% of the 

MLs have been correctly identified as “Marginal Lands” and 55.00% of the areas 

identified as “Marginal Lands” within the classification are truly of that category. The 

only highly reliable category associated with this classification from both a producer’s 

(96.56%) and a user’s (94.33%) perspective is “Excluded areas”. 
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8.3.3 Germany - Nochten/Reichwalde 

 

Figure 19. The error matrix table in the excel file of the testing site in Germany 
(Nochten/Reichwalde). 

The error matrix of this testing site (Nochten/Reichwalde) indicates an overall accuracy 

of 87.90%. However, producer’s accuracies range from just 10.17% (“Marginal Lands”) 

to 100% (“Unsuitable Lands”) and user’s accuracies vary from 30.00% (“Unsuitable 

Lands”) to 90.00% (“Potential Marginal Lands”). In this example, the overall accuracy of 

the classification is 87.90% (a good accuracy). However, as the primary purpose of the 

classification is to map the locations of the “Marginal Lands” category, we note that the 

producer’s accuracy of this class is not good at all (10.17%) and the user’s accuracy for 

this class is 60.00%. That is to say, only 10.17% of the MLs have been correctly 

identified as “Marginal Lands” and 60.00% of the areas identified as “Marginal Lands” 

within the classification are truly of that category. The only highly reliable category 

associated with this classification from both a producer’s (98.24%) and a user’s 

(89.58%) perspective is “Excluded areas”. 

8.3.4 IV. Poland - Staszow 

 

Figure 20. The error matrix table in the excel file of the testing site in Poland (Staszow). 

The error matrix of this testing site (Poland) indicates an overall accuracy of 94.33%. 

However, producer’s accuracies range from just 0.00% (“Marginal Lands”) to 100% 

(“Unsuitable Lands” and “Potential Marginal Lands”) and user’s accuracies vary from 

0.00% (“Marginal Lands”) to 98.60% (“Excluded areas”). In this example, the overall 

accuracy of the classification is 94.33% (a good accuracy). However, as the primary 

purpose of the classification is to map the locations of the “Marginal Lands” category, 

we note that the producer’s accuracy of this class is not good at all (0.00%) and the 

user’s accuracy for this class is also 0.00%. That is to say, 0.00% of the MLs have 
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been correctly identified as “Marginal Lands” and 0.00% of the areas identified as 

“Marginal Lands” within the classification are truly of that category. The only highly 

reliable category associated with this classification from both a producer’s (95.72%) 

and a user’s (98.60%) perspective is “Excluded areas”. 
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