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EXECUTIVE SUMMARY 

The objective of this task was the development of a methodology for Marginal Lands 

classification into Carbon Sequestration Capacity (CSC) groups. In the framework of 

the MAIL project, this task used the knowledge acquired in tasks 2.3, 2.5 and 4.2. 

In order to meet the objective, two different approaches were developed, due to the 

different scale levels reported on this task, at pilot site level and at European level. 

The methodology implemented regarding pilot site level consisted of defining and 

estimating Above Ground Biomass (AGB), Current Carbon Sequestration (CCS) and 

Carbon Sequestration Capacity (CSC). Accurate AGB mapping is crucial for studies on 

carbon sequestration as they are directly connected, due to this, in the pilot site level, 

several indicators generated from satellite images tested in order to evaluate which and 

how they influence the prediction of AGB. This was followed by the integration of 

results from task 4.2 for the estimation of CSC within the study area and finally the 

classification of the pilot area into CSC groups.  

A different methodology implemented regarding European level, as methodology 

applied in pilot site level needs very long computation time, beyond the scope of this 

Task. The methodology based on multicriteria GIS analysis with data including tree 

species maps, land cover maps and Aboveground Biomass maps. The aim was to 

estimate potential suitable species for afforestation for each Marginal Land as well 

species’ Above Ground Biomass Carbon (AGBC) and proceed to classification into 

CSC groups. 

From the findings of the task, a tool was developed to assist all possible users (policy 

makers, stakeholders, students, etc.) by providing a general overview regarding CSC 

groups and Potential Suitable Species for afforestation of MLs. 
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1. INTRODUCTION AND GOALS 

The following document reports the main findings from the implementation of Task 2.7, 

namely “Marginal Lands classification in Carbon Sequestration Capacity groups”. 

Hence, this Chapter illustrates the structure of the entire document as well as its main 

objectives.  

For the completion of task 2.7, the following objectives were defined: 

1. Classifying Carbon Sequestration Capacity (CSC) groups; 

2. Identifying and developing indicators which help the estimation of the Current 

Carbon Sequestration (CCS) within an area. 

In order to reach the objectives above, the following work proposes different 

approaches for different levels of detail. That are, at pilot site and at European level.  

At the finest scale, a pilot site of around 4,000 hectares (ha) is selected as a case of 

study. Within the pilot site, Above Ground Biomass (AGB), Current Carbon 

Sequestration (CCS) and related Carbon Sequestration Capacity (CSC) are defined 

and estimated. This first part of the report includes the definition of a structured 

methodology, a thorough analysis of several indicators, and the final creation of a CSC 

groups map (Chapter 3). Subsequently, the second part of the report concerns a 

broader scale that of the European Union (Chapter 4). 

Serra de Espadan was selected as pilot site to assess whether the use of different 

indicators that influence the prediction of Above Ground Biomass (AGB). Accurate 

AGB mapping is a major step for studies on carbon sequestration, as the estimation of 

the latter is directly connected to the biomass present in the area. Hence, through the 

testing and evaluation of a variety of indicators – i.e., Vegetation Indices (VI), 

topographic measures, etc. – generated from satellite images, we aim to identify which 

of these result in a better predictive capacity for modelling AGB when working with 

Machine Learning regression models. 

This approach is characterized by high-quality outputs, however, complex 

methodologies could not be easily scaled up due to their long computation time, cost of 

production, as well as the need for expert professionals. Therefore, classifying MLs into 

CSC groups at European level was performed by implementing an alternative 
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approach, which is by estimating potential suitable species for afforestation and their 

Aboveground Biomass Carbon. 

2. DEFINITIONS 

The following Chapter highlights the role that forested areas have in the context of 

Carbon sequestration; hence, it illustrates the concepts of Above Ground Biomass 

(AGB), Current Carbon Sequestration (CCS), Carbon Carrying Capacity (CCC), and 

Carbon Sequestration Capacity (CSC). 

2.1. Above Ground Biomass and Current Carbon Sequestration 

Carbon sequestration is a natural process involving the capture of carbon dioxide from 

the atmosphere and its long-term storage into 3 major carbon pools; namely, terrestrial, 

oceanic, and geological pool (IPCC, 2006; Salem et al., 2020). Furthermore, carbon 

can be stored in either a liquid or a solid state by different means such as trees, soil, 

ocean, or organic matter (Lackner, 2003). The Intergovernmental Panel on Climate 

Change (IPCC, 2006) divides the terrestrial pool into 5 main reservoirs: Above Ground 

Biomass (AGB), Below Ground Biomass (BGB), litter, woody debris, and Soil Organic 

Matter (SOM). Hence, the carbon sequestrated within the terrestrial pool is the sum of 

the amounts of carbon in vegetation biomass and soil (Salem et al., 2020). 

Forests account for the largest portion of the terrestrial vegetation biomass and are 

characterized by the highest carbon density compared to other terrestrial environments 

(Stinson, et al., 2012). Up to 80% of the above-ground carbon stored in the terrestrial 

pool (IPCC, 2006) is stored in forest ecosystems. However, because forests are 

affected by many disturbances - i.e., fires, deforestation, parasites, land use change, 

etc., around 60% of newly stored carbon is cyclically returned to the atmosphere 

(Salem et al., 2020).  

These characteristics make monitoring the dynamics of forest biomass an important 

step in acquiring up-to-date and reliable information about the state of global carbon 

budget, particularly in the context of climate change mitigation (Galidaki, et al., 2017). 

Thus, the estimation of Above Ground Biomass (AGB) has been the subject of 

extensive research, given its importance in planning carbon emission mitigation 

strategies and sustainable forest management. There are two main groups of methods 

regarding ABG estimation. ABG can be estimated either through direct or indirect 
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methods (Salem et al., 2020; Galidaki, et al., 2017; Lu, 2006). Direct methods, also 

known as destructive, include the harvesting, separation into components, oven drying, 

and weighing of the tree components as fractions of the biomass. These methods are 

highly precise; however, they are also expensive, destructive, and time-consuming, 

which makes them unsustainable to be used in large scale (Picardet al., 2012; Salem 

et al., 2020). The outputs from direct methods have been used throughout the years for 

building allometric equations - i.e., statistical models belonging to the indirect methods 

category. Indirect methods, also known as non-destructive, do not require the physical 

destruction of trees. These can be further divided into two main approaches: allometric 

equations and Remote Sensing-based estimations (Galidaki, et al., 2017), the latter 

being dependent on the first one for model training. 

Allometric equations are statistical models that use forest measurable biophysical 

characteristics - i.e., height, Diameter at Breast Height (DBH) or crown size - to 

estimate either tree volume or biomass; such models allow for the estimation of 

biomass without the need of harvesting (Vashum, 2012). Allometric equations have 

been developed for many tree species as well as for the most common species 

combination (Salem et al., 2020). The use of remote sensing and GIS in the context of 

estimation of forest biomass have received attention due to increase of spatial 

resolution (Zheng, et al., 2004; Pandit et al., 2019; Gao, et al., 2018; Cairns et al., 

1997). Furthermore, previous studies estimate BGB and litter in mature forests to be 

around 20% and 10-20% of the predicted AGB, respectively (Kankare, et al., 2013; 

Cairns et al., 1997).  

Estimated or measured AGB is used as the basis for the estimation of the Current 

Carbon Sequestration (CCS). Within a forested area, the CCS can be defined as the 

amount of carbon stored in forest biomass in the moment of the forest inventory. For 

this work we will focus on the amount of carbon stored in the above ground portion of a 

forested area. Therefore, the estimation of CCS from AGB is commonly performed by 

multiplying the AGB by an average conversion factor of 0.5, which assumes the 50% of 

the dry biomass to be carbon (Khan et al., 2020). More precise factors have been 

provided for different ecological zones; the IPCC (2006) suggests a factor of 0.47 for 

tropical and subtropical forests. However, when the estimation of CS requires higher 

precision, it should be noticed that the carbon content in dry matter changes between 

tree species, as well as amongst climate zones, and it is correlated to the species 

wood density; species with higher wood density store higher quantities of carbon; that 
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is Mediterranean species have higher carbon content than tropical species, despite 

their extent and density being more limited (Thomas & Martin, 2012). 

2.2. Carbon Carrying Capacity and Carbon Sequestration Capacity 

Other than the Current Carbon Sequestration (CCS), two further concepts essential in 

this project framework are the Carbon Carrying Capacity (CCC) and the Carbon 

Sequestration Capacity or Potential (CSC or CSP). Henceforth, the latest will be 

referred to as CSC. 

The Carbon Carrying Capacity (CCC) is defined by Keith (2009) as the amount of 

carbon stored in a forest in a state of dynamic equilibrium and excluding anthropogenic 

disturbances; this state of saturation is reached when the forest reaches a full-growth, 

namely old-growth forest. Hence, a forest’s CCC, together with its CCS, can be used to 

estimate its Carbon Sequestration Capacity (CSC). This is defined as the maximum 

potential quantity of carbon confinement for a forest in the moment being, and it is 

estimated as the difference between the CCC and the CCS (Liu, 2012; Keith, 2009; 

Khan et al., 2020). 

 

Equation 1. Carbon Sequestration Capacity. 

However, the estimation of a forest’s CCC is not a trivial task. A forest storage capacity 

tends to rapidly grow during its early development and slows down around 80-100 

years, depending on the species or forest types, reaching a dynamic balance with the 

amount of carbon in the atmosphere, when constant climatic conditions are considered 

(Zhou et al., 2002). Moreover, forestry Inventories of such old plots are rare to be 

found. Liu (2012) used a mix of remote sensing and geo-statistics techniques, as well 

as old-growth forest inventories, to estimate a reference CCC for each one of the level-

2 FAO world ecological zones (FAO, 2012; Liu, 2012). However, for the pilot site 

located in Serra de Espadan, Spain, the CCC was accurately estimated in the 

framework of task 4.2, within which several scenarios were considered. 

3. CARBON SEQUESTRATION CAPACITY MAPPING AT THE PILOT SITE LEVEL 

The following Chapter focuses on a study area located in Serra de Espadan Natural 

Park, Spain. Hence, it covers the main steps of an exploratory workflow for the 
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estimation of Above Ground Biomass (AGB), related Current Carbon Sequestration 

(CCS), and the final mapping of Carbon Sequestration Capacity (CSC) groups. 

3.1. Objectives 

Starting off with the 2 main objectives defined for task T2.7 – that are the (1) 

classification of CSC groups and (2) the identification and generation of indicators 

which help the estimation of the CCS –, these were broken down to build a 

methodology which aims to assess the capabilities of Sentinel-2 derived measures for 

the estimation AGB. More specifically, we want to identify an optimal Season for 

satellite data acquisition and a ranking of the most influential satellite-generated 

indicators using Machine Learning algorithms. 

Therefore, the following pilot area-specific objectives were defined: 

• Generation and testing of several Vegetation Indices (VI), Biophysical param, 

texture and topographic measures as CCS indicators; 

• Testing satellite images collected in different Seasons: Summer (August 2015) 

and Autumn (November 2016); 

• Incorporating outputs from task T4.2 for the estimation of CSC within the study 

area; 

• Classification of the pilot area into CSC groups. 

3.2. Related studies 

Above Ground Biomass (AGB) estimation, together with the estimation of CCC, is the 

foundation for defining CSC groups. This aspect is explained in more detail in section 

3.3. Therefore, the following section contains a brief literature review on remote 

sensing-based studies for the estimation of AGB. More specifically, the focus is on 

those studies involving the use of the twin satellites Sentinel-2A and 2B. 

Remote sensing-based estimation of AGB utilizes a variety of sensors, features and 

several regression models (Galidaki, et al., 2017; Lu, 2006; Salem et al., 2020). It their 

extensive literature review, Salem et al. (2020), analysed over 150 peer-reviewed 

articled on AGB and CS estimation. Only 25% of these studies use imagery data from 

active sensors, almost equally divided into LiDAR (laser imaging, detection, and 

ranging) and Radar (radio detection and ranging) technologies; while the majority of 

them deals with imagery collected from various passive sensors. 
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Sentinel-2A was launched in 2015 by the European Space Agency (ESA) and since 

then its potential in AGB estimation has been evaluated by several authors and within a 

variety of ecological zones  (Pandit et al., 2019). 

The work of Pandit et all (2018) explores the performance of spectrally derived indices 

from Sentinel-2A as inputs in a Random Forest (RF) model in a subtropical forest in 

Nepal. Field-based AGB values were estimated by applying an allometric equation 

using forestry inventory data from 113 measured plots with a radius of 12 m. The 

model performance was assessed by using a 10-fold cross-validation. The predicted 

AGB ranged from a minimum of 35.42 t/ha to a maximum of 276.92 t/ha, with a mean 

of 160 t/ha; the final model resulted in a Root Mean Squared Error (RMSE) of 25.32 

t/ha between the observed and the predicted biomass.  

Khan et al. (2020) explored the use of Sentinel-2 images in a mountainous temperate 

forest in Pakistan. Their study examines the performance of 3 categories of spectrally 

derived VIs - i.e., Broadband, Canopy Water Content, and Narrow band red-edge VIs. 

Out of 25 indices, only 11 were used as inputs in the linear regression model, most of 

which were red-edge VIs. The predicted AGB ranged from a minimum of 46.45 t/ha to 

a maximum of 279.59 t/ha, and a mean of 148.79 t/ha. The final biomass map was 

validated using 10 out of the 55 plots, with a radius of 17 m, and resulted in a RMSE of 

35.23 t/ha between observed and predicted biomass.  

Additionally, Sentinel-2 single bands have been used in boreal areas for estimating 

AGB over the entire Norwegian territory. In their work, Puliti et al. (2020), used the 

whole Norwegian forestry inventory, composed of 7,710 plots with a radius of 9 m. 

Furthermore, a Canopy Height Model (CHM) was included as model input; this was 

generated by normalising a freely available 2 m resolution DEM covering the entire 

area north of 60 degrees of latitude with a freely available 10 m resolution Digital 

Terrain Model (DTM). The final maps were evaluated using cross-validation, resulting 

in a RMSE of 45.8 t/ha when using solely Sentinel-2 single bands; a similar 

performance was achieved from using solely the CHM, with a RMSE OF 47.7 t/ha; 

finally, a noticeable synergy was found when using both, with a decrease of the error 

down to 41.4 t/ha. 

In conclusion, studies involving the twin satellites Sentinel-2A and 2B show higher 

performance in AGB estimation compared to working with Landsat images. This is 

attributed to its higher spectral, spatial, and temporal resolution compared to the 
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Landsat mission. Specially, the presence of red-edge bands makes these images 

highly valuable for vegetation analysis (Pandit, Tsuyuki, & Dube, 2018). 

3.3. Materials & Methodology 

This Section contains the description of the pilot site, as well as data collection and 

data pre-processing. Moreover, it illustrates the proposed methodological workflow. 

3.3.1. Study area 

The area was identified as Marginal Land (ML) in a previous MAIL task, which aimed to 

the identification of MLs in Europe. The following description of the study area was 

provided by a study from Torralba and Crespo-Peremarch (2018). The area object of 

study covers a total of 3,741.5 ha and is located in the Natural Park of Serra de 

Espadan, in the eastern Spain province of Castellon (Figure 1). This natural park is a 

Mediterranean forest with soft and rounded hills, presence of abandoned farming with 

artificial terraces, and mountain peaks up to 1100 meters of altitude.  

A European Environment Agency report from 2017 classified this area as a semi-

natural forest with a natural function, composition, and structure, but modified by 

human activities throughout history (EEA, 2017). Forest types and conditions have 

been influenced by human needs and changes in land use, as well as reforestation of 

single species policies from the last century. This area displays a heterogeneous 

landscape dominated by pure and mixed native coniferous and deciduous forests, with 

species of the genera Pinus and Quercus. In accordance with the global ecological 

zones described by FAO and to the Koppen-Trewartha Climatic groups, the 

Mediterranean climate is a variety of the subtropical climate, together with the Oceanic, 

the Humid subtropical, the Semi-desert, and desert climate (FAO, 2012). Hence, since 

many of the authors mentioned in Chapter 2 refer to their area of interest by using the 

climate domain - i.e., tropical, subtropical, temperate, boreal, polar - from now on, our 

area of study will be referred to by the name of its major climate domain, that is 

subtropical. 
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Location of Serra de Espadan Natural Park, Spain (a). Location of the study area within Serra 

de Espadan Natural Park (b). Distribution of the forestry inventory plots within the area (c). 

Figure 1. Study area and location of Forestry Inventory plots. 

3.3.2. Field data and field based AGB 

A field inventory with measured Above Ground Biomass (AGB) at the plot level was 

provided by the Geo-Environmental Cartography and Remote Sensing Group (CGAT) 

at the Universitat Politecnica de Valencia (UPV); the collection of this forestry inventory 

was funded by the Spanish Ministerio de Economıa y Competitividad, in the framework 

of the project CGL2016-80705-R. The field data was collected in September 2015 for a 

total of 73 circular plots with a radius of 15 m distributed throughout the study area. 

Diameter at Breast Height (DBH) and height were measured for trees with a DBH 

above 5 cm. For each species or forest type within a plot, AGB was estimated in t/plots 

using species-specific and forest type-specific allometric equations from (Gregorioet 
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al., 2005). As showed in Equation 2, the provided field based AGB was then converted 

from t/plots into t/ha. 

 

Equation 2. Above Ground Biomass. 

The field-based AGB ranges from a minimum of 0.35 t/ha to a maximum of 274.50 t/ha, 

with a mean value of 92.49 t/ha; the distribution appears right-skewed (Figure 2). It 

must be noted that the values on the vertical axis in Figure 2 are referring to the status 

of data after preprocessing, that is once the forestry plots - now represented as 

polygons - are transformed into a feature point class where each plot results in 6 to 7 

points; more information on this can be found in the following section. 

 

Figure 2. Distribution of measures Above Ground Biomass. 

3.3.3. Sentinel-2 collection and pre-processing 

From the Copernicus Open Access Hub3, 2 images covering 2 seasons were 

downloaded: Summer (August 2015) and Autumn (November 2016). Both dates are 

close to the time the forestry’s inventory measures and have a cloud coverage of less 

than 5% with clouds absent in the spatial subset where the study area is located. A 

single Sentinel 2A Level 1C product is an ortho-image provided in the UTM/WGS84 

 
3 https://scihub.copernicus.eu/ 



[D2.6] MLs classification in Carbon sequestration capacity groups 

 

 

[18|58] 

projection, and composed of 13 spectral bands: visible, NIR, red-edge, and shortwave 

infrared (SWIR), which spatial resolution varying from 10, 20 and 60 m. 

The first preprocessing steps were carried out using license free tools provided by the 

European Spatial Agency (ESA). First, to adjust the images from Top of the 

Atmosphere (ToA, L1C) to Bottom of the Atmosphere (BoA, L2A) reflectance, Sen2Cor 

was used. This plugin allows for atmospheric, terrain, and cirrus correction. Second, 

using the Sentinel Application Platform (SNAP), red-edge and SWIR bands were re-

sampled from 20 to 10 m using the nearest neighbor method. The three bands with a 

spatial resolution of 60 m (band 1, 9 and 10) were excluded from the analysis by using 

the subset tool in SNAP, as these are mostly used for climate and atmospheric related 

studies. Finally, the remaining bands were clipped to the extent of the study area. 

3.3.4. Vegetation Indices and biophysical parameters generation 

Vegetation Indices (VI) and biophysical parameters have been proved to increase the 

performance of regression algorithms for AGB estimation in different ecological zones 

and forest types (Forkuor, et al., 2020; Pandit, et all, 2018; Galidaki, et al., 2017). With 

the purpose of evaluating the performance of several feature selection methods, a wide 

range of VIs was generated using the calculator in SNAP. Care was taken in including 

VIs which required SWIR and red-edge bands, as shown in Table 1. The VIs were 

calculated for both dates, that is August 2015 and November 2016. 

Furthermore, 5 biophysical parameters (Table 2) - Leaf Area Index (LAI), Canopy 

Water Content (LAI cwc), Canopy Chlorophyll Content (LAI cab), Fraction of absorbed 

photosynthetically active radiation (FAPAR) and Fraction of vegetation cover 

(FCOVER) - were calculated for each image by using the biophysical processor in 

SNAP. Such variables have been found to enhance the estimation of biomass by 

describing spatial distribution and dynamics of vegetation (Forkuor, et al., 2020). 
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Table 1. Sentinel-2 generated Vegetation Indices. 

 

Table 2. Sentinel-2 generated biophysical parameters. 

 

3.3.5. Texture measures generation 

Once several spectral variables were generated - VIs and biophysical parameters -, 

further spatial predictors were included. This allows to consider not only the spectral 

response of different surfaces, but also the spatial relationships among these surfaces. 

For this purpose, texture measures derived from the Gray Level Co-occurrence Matrix 

(GLCM) were included, as they have been widely used for enhancing remote sensing-

based classification and regression forestry-related problems (Pandit et al., 2019; 
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Kelsey & Neff, 2014). As Hall-Beyer (2017a) points out in her tutorial on GLCM texture, 

a GLCM is not an image, it is rather a tabulation expressing how often different 

combinations of Digital Numbers (Gray Levels) occur in an image band, showing all the 

possible combinations of value pairs and their frequency. This table is constructed by 

using each and every pixel of the image (reference pixel) and considering its 

neighboring pixel or pixels (neighbor pixel).  

Texture measures derived from the GLCM consider the relationship between 2 pixels 

(GLCM) in the original image, as opposite to first order texture measures which are 

calculated directly from the original image pixels values without considering how this 

are related to one another (Haralick et al., 1973); most of GLCM derived measures 

used in Remote Sensing come from a series of papers of Haralick and colleagues in 

the 60s. GLCM derived texture measures do not have a single way to be classified, 

hence, we are going to use the division used by Hall-Beyer in her tutorial (Hall-Beyer, 

2017a); in this work, these measures are divided into 3 categories depending on the 

weights in the equations: measures related to contrast, measures related to orderliness 

and GLCM descriptive statistics.  

Pandit (2019) explored the use of Sentinel-2 extracted GLCM texture measures in AGB 

estimation, and concluded that GLCM mean, variance, and dissimilarity from band 2 

(blue), with a window size of 7x7, yield the best AGB predictor for tropical and 

subtropical forests dominated by Shorea robusta and Pinus roxburghii, located in Parsa 

National Park, Nepal. In another study, AGB was estimated in the San Juan National 

Forest located in the southwest of Colorado; the area is characterized by Ponderosa 

Pine woodlands, Warm-Dry Mixed Conifer forests, Cool-Moist Mixed Conifer forests, 

and Spruce-Fir forests. In order to estimate AGB in such a context, a GLCM was 

derived from Landsat TM band 2; entropy, mean, and correlation were found to be the 

best predictors for that region (Kelsey & Neff, 2014). Thus, the importance of GLCM 

measures can vary based on sensor and study area, however, to minimize correlation 

among measures, Hall-Beyer suggests using one measure from each category.  

In the following study, 3 different GLCM texture measures were chosen, for a total of 

12 new features to be tested. These are divided as follows: contrast, entropy, and 

GLCM-mean were derived from both Sentinel-2 band-2 (blue) and NDVI generated for 

August 2015 and November 2016 to assess whether images from a certain season 

might provide better results (Table 3). 
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Table 3. Sentinel-2 generated texture measures. 

 

3.3.6. Topographic data collection and pre-processing 

The European Digital Elevation Model (DEM) and derived slope were downloaded in 

the section Imagery and Reference Data of the Copernicus website. These products 

have a spatial resolution of 25m. DEM and slope were re-sampled to the same spatial 

resolution as the Sentinel-2 images (10m) by making sure that cell size and cell 

positioning matched. DEM up-sampling is carried out in ArcGIS Pro using the nearest 

neighbor assignment method, since it does not alter the input cell value. Furthermore, 

DEM and slope are clipped to the study area extent. 

3.3.7. Methodology workflow 

The predictor feature space consists of 63 features from the following categories: VIs, 

biophysical parameters, texture measures, spectral bands, DEM and slope. All features 

were transformed from their original raster format to vector format (points) using the 

Raster to Point (Conversion) tool in ArcGIS Pro. Similarly, the circular forestry plots 

were rasterized to the Sentinel-2 10 m grid, as represented in Figure 3 a) and b), and 

they were given pixel values corresponding the plot AGB. Subsequently, the Extract 

multiple values to points tool was used to create a final feature dataset with associated 

table containing a total of 65 columns, of which 63 represent each of the generated 

features, 1 represents the field based AGB values, and the last one represents the 

geometry field. This last column allows for the feature point to be transformed back into 

a raster format to subsequently generate the final maps.  
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The 63 predictor features were normalized using the RobustScaler from Scikit-learn4. 

The RobustScaler normalizes the dataset according to the interquartile range, such an 

approach offers a good handle of outliers compared to mean- and variance-based 

normalization methods (Pedregosa, et al., 2011). This step is necessary as the 

features differ in both range and unit of measure and certain regression models and 

feature selection methods tend to give more importance to high cardinality and 

continuous features. 

A 7-folds cross-validation constraining samples from single plot to be either only in the 

training or in the validation set (Figure 3, c) and d)) was performed Secondly, only the 

training set is used to fit the scaler, this allows validation data to remain unseen 

throughout the process. The cross-validation is used before each step, that is feature 

selection, AGB modelling, and hyper-parameters fine-tuning. 

 

Circular forestry plots in vector format (polygon) (a). Rasterization of the forestry plots (b), 

vectorization to points of each layer including forestry plots (c), and division in training and 

validation set (d). 

Figure 3. Rasterization and cross-validation. 

 
4 https://scikit-learn.org/stable/index.html 
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Figure 4. Methodology workflow. 

Subsequently, an indicator (or feature) selection method is introduced to generate a 

ranking for the indicators. For this, the Mean Decrease in Impurity (MDI) measure is 

implemented; this is a supervised and simple to implement feature selection method 

derived from the Random Forest algorithm. Furthermore, the influence of the generated 

features is going to also be analyzed through a frequency table and a model explainer. 
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Therefore, once the indicators are ranked, a predictive model is going to be built. For 

predicting AGB within the pilot site, the Extreme Gradient Boosting algorithm is 

implemented and finetuned using a Bayesian Optimization method. Finally, the model 

performance is evaluated through its Root Mean Squared Error (RMSE). The RMSE is 

calculated using the Equation 3, where yp is the predicted AGB of a ni point, yo is the 

observed AGB of the ni point, and n is the number of validation points. 

 

Equation 3. Root Mean Squared Error. 

Once the Above Ground Biomass (AGB) is estimated, the Current Carbon 

Sequestration (CCS) is calculated using a conversion coefficient of 0.47, as suggested 

by the IPCC (2006) for our forest type. Finally, the Carbon Sequestration Capacity 

(CSC) is being evaluated as showed in Equation 1 (Liu, 2012; Keith, 2009; Khan et al., 

2020); hence, the value for the Carbon Carrying Capacity (CCC) of our study area was 

estimated in task 4.2 of the MAIL project. 

3.4. Implementation & Results 

3.4.1. Relevance of Indicators 

One of the objectives of this task is to identify effective indicators (or features) which 

can help enhance the prediction of Above Ground Biomass (AGB). Therefore, a deeper 

analysis on the performance of the selected indicators is done. The following section 

contains 3 rankings of the indicators. The first represents the feature importance given 

by a feature selection method (Figure 4), the second one illustrates the frequency of 

selection by 4 predictive models (Table 4). Finally, the last ranking shows the impact 

that the indicators selected by Extreme Gradient Boosting (XGB) algorithm have on the 

model outputs (Figure 6Figure 6. SHAP summary plot.). 

The Random Forest (RF) algorithm provides 3 measures of impurity: Gini index, 

entropy, and variance. Variance, or residual sum of squares, is used to measure node 

impurity in regression problems, and it represents the total reduction of the variance of 

the target variable due to the split of a certain feature at the node (Lewinson, 2019). 

Impurity measures can be used for feature selection by evaluating the extent to which 
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each feature contributes to decreasing the averaged impurity in each tree composing 

the forest (Lewinson, 2019), so as to calculate the Mean Decrease in Impurity (MDI) for 

each feature. The feature able to account for more variance decrease is going to be at 

the top of the ranking (Lewinson, 2019). Therefore, the MDI can be seen as the total 

decrease in node impurity from splitting on the variable, averaged over all trees (Hong 

et al., 2016). 

Figure 5 shows the MDI that each indicator brings to the model. The first 9 selected 

indicators, apart from the DEM, were all extracted from the summer image. 

Furthermore, biophysical parameters were often selected as top-ranked indicators, 

specifically Canopy Chlorophyll Content (LAIcb), Canopy Water Content (LAIcw), and a 

chlorophyll index calculated using red-edge bands (Clre).  

 

Figure 5. Indicators selection with Mean Decrease in Impurity. 

Therefore, a total of 4 Machine Learning models were tested to evaluate their 

performance in predicting AGB when different indicators are used as model inputs. The 

indicators used to build the best 4 models are showed in Table 4. Hence, the frequency 

of selection of each indicator is illustrated. A total of 3 out of 63 indicators were chosen 

by all the models, these are the Digital Elevation Model (DEM), the SWIR band (B12) 

and the biophysical parameter (LAI cb), both extracted from the summer month; 75% of 
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the models also included other two indicators from the summer month, which are 

another biophysical parameter (LAI cw) and a vegetation index based on red-edge 

bands (Clre). Also, 16 indicators were included in the making of the best models for the 

Extreme Gradient Boosting (XGB) and K-Nearest Neighbor (kNN) algorithms. Further 5 

indicators were chosen by only 25% of the models. Finally, a total of 37 out of 63 

generated indicators were chosen by none of the tested models. 

Table 4. Frequency of selection. 

Feature Month kNN RF XGB DNN 
Frequency of 
Selection (%) 

LAI cb Aug x x x x 100 

B12 Aug x x x x 100 

DEM - x x x x 100 

LAI cw Aug x  x x 75 

Clre Aug x  x x 75 

FAPAR Aug x  x  50 

Ent VI Aug x  x  50 

GNDVI Aug x  x  50 

FAPAR Nov x  x  50 

slope - x  x  50 

LAI Nov x  x  50 

LAI cb Nov x  x  50 

LAI Aug x  x  50 

Con b2 Aug x  x  50 

FCOVER Nov x  x  50 

Mean VI Nov x  x  50 

Ent VI Nov x  x  50 

Ent b2 Aug x  x  50 

LAI cw Nov x  x  50 

GEMI Nov x  x  50 

Ent b2 Nov x  x  50 

Clre Nov   x  25 

B3 Aug x    25 

B4 Aug   x  25 

B11 Aug x    25 

Mean b2 Aug x    25 

Others -     0 

The SHapley Additive exPlanations (SHAP) package was used as model explainer for 

the Extreme Gradient Boosting (XGB) model. SHAP is a local feature importance 

method, meaning that a local feature importance is calculated for every observation. 

This is performed by holding out the feature value before predicting each instance, 

which is then repeated for each feature and each instance of the entire training set so 

as to measure the local importance of each feature. The computation of each instance 
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for a big dataset can become time consuming, however, in 2020 a fast and precise 

algorithm was created for tree-based models (Lundberg, 2020). 

A global feature importance can be obtained by aggregating the local feature 

importance of each instance, as shown in the summary plot in Figure 6, where each 

dot represents an observation of the dataset. This plot illustrates how the model 

predictions were influenced by each feature. More specifically, it shows the features 

contribution, for each instance, in pushing the model output from a base value to the 

output value; where the base value is defined as the average model output over the 

training set (Lundberg, 2020). When a feature has negative SHAP value, the dot 

representing that instance is found on the left-side of the plot and it means that that 

feature value pushed the prediction for that instance (or dot) to be lower than the base 

value; on the other hand, if a dot is found on the right-hand side of the plot, the 

observed feature value pushed the model output to be higher than the base value. 

Furthermore, for each feature, overlapping points are visualized in the y-axis direction 

so to give an idea of the feature values distribution. Additionally, the color of the dots 

refers to the features value. 

By observing the summary plot in Figure 6 the indicators can be divided into 2 groups:  

1. Indicators which increasing in values pushed the model to output AGB higher than 

the base value – belonging to the first group are: The Chlorophyll index based on 

red-edge bands from the summer month (ClreAug), the Fraction of absorbed 

radiation from both months (FAPARAug and FAPARNov), the Canopy Chlorophyll 

Content from the Summer month (LAIcbAug), and the slope; 

2. Indicators which increasing in values would push the model to output AGB lower 

than the base value – belonging to this second group are: band 12 from the 

summer image (b12Aug) and the DEM belong to the second group.  

The remaining indicators do not show any clear visual pattern in the way they impacted 

the model output. 
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Figure 6. SHAP summary plot. 

In conclusion, the 3 implemented approaches provided insights on which of the 

generated indicators are important for biomass prediction. Hence, these findings will 

help guide the making of National and European carbon maps in the framework of the 

MAIL project.  

3.4.2. Mapping of AGB, CCS and CSC groups 

The following Section presents the Above Ground Biomass (AGB) map, the Current 

Carbon Sequestration (CCS) map, and a final Carbon Sequestration Capacity (CSC) 

groups map. 

The AGB map depicted in Figure 8 was generated by using the prediction from the 

XGB algorithm. This model was built by using the 23 top-ranked features selected by 

the MDI measure, and hyper-parameters optimization with Bayesian Search. The 

model was evaluated using 7-folds cross-validation and led to an error of 37.79 t/ha, an 
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estimated average AGB value of 83 t/ha, a minimum of 0 t/ha, a maximum of 346.56 

t/ha and a standard deviation of 51.3 t/ha (Figure 9).  

Moreover, the goodness of fit was visually evaluated. In Figure 7 the measured AGB 

values were plotted together with the best model predictions. Values lower than 40 t/ha 

and higher than 160 t/ha were over- and underestimated, respectively. 

 

Figure 7: Goodness of fit. 

The AGB map was generated by using 6 manual classes; the majority of the territory 

located on the south-west of map is covered by AGB values ranging from 0 t/ha to 100 

t/ha, with spread high values ranging from 101 t/ha to 200 t/ha. On the other hand, the 

second portion of the study area, located on the north-east side of the map, is 

characterized by higher AGB values, with areas reaching over 250 t/ha.  

 

Figure 8: Above Ground Biomass map. 
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Figure 9: Distribution of predictions. 

Hence, a CCS map was generated by using the conversion factor suggested by the 

IPCC (2006), that is multiplying the predicted AGB values by 0.47. In Figure 10, the 

portion of the study area located on the south-west of map is sequestrating 0 t/ha to 40 

t/ha, with spread higher values ranging from 41 t/ha to 80 t/ha. On the other hand, the 

second portion of the study area, located on the north-east side of the map, is 

characterized by higher CS, with areas storing over 120 t/ha. 

 

Figure 10: Current Carbon Sequestration map. 
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Deliverable 2.3 defined 3 levels of marginality. These are Marginal Lands with high 

plantation suitability (ML1), Marginal Lands with low plantation suitability (ML2), and 

potentially unsuitable lands (ML3). Hence, within Serra de Espadan, all 3 types of 

marginality were identified. As illustrated in Figure 11, most of the study area is 

considered unsuitable for plantation, therefore its carbon sequestration could not be 

increased through reforestation practices. Hence, small patches were identified as of 

low suitable for reforestation, while a south-west portion of the area was considered to 

be highly suitable. Such levels of marginality are due to environmental limitations rather 

than economic or social. 

In the making of Deliverable 4.2, a reforestation scenario for Serra de Espadan was 

planned out, and the Carbon Carrying Capacity (CCC) for highly suitable (ML1) and 

low suitable (ML2) areas was estimated. Hence, the species selection prioritized the 

most resistant species to adverse ecological factors over more resource-demanding 

species. For this reason, coniferous were chosen for the reforestation proposal. 

Specifically, a mixture of Pinus pinaster in 70-80% and Pinus halepensis in 30-20% 

was suggested for both levels of marginality. Hence, the CCC was estimated using 

forest growth tables and values of future biomass and carbon capacity of the selected 

species after 50 years from plantation. For ML1, the CCC after 50 years was estimated 

to be 94.2 t/ha, whilst in ML2, this value was predicted to be 55.2 t/ha. 

 

Figure 11: Marginality levels. 
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Therefore, the Carbon Sequestration Capacity (CSC) was estimated for both, highly 

suitable (ML1) and low suitable areas (ML2), by following Equation 1, and using the 

previously predicted Current Carbon Sequestration (CCS), as well as the 2 Carbon 

Carrying Capacity (CCC) values proposed in Deliverable 4.2. 

Figure 12 shows the CSC groups. Group I (high suitability for plantation) is 

concentrated on the south-west of the pilot site, and their CSC varies from 9.64 to 

94.14 t/ha, with an average of 72.01 and a standard deviation of 9.62 t/ha. Group II 

represents a very small part of the area and its CSC ranges from 0 to 53 t/ha, with an 

average of 29.32 and a standard deviation of 11.95 t/ha. Hence, the CSC for the 

remaining territory (Group III) was not estimated, as the rest of the pilot site was 

classified as unsuitable for reforestation in the context of Deliverable 2.3.  

 

Figure 12: Carbon Sequestration Capacity Groups map. 
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3.5. Discussion & Conclusions 

This Chapter aimed to assess the presence of Carbon Sequestration Capacity (CSC) 

groups in a Serra de Espadan, a Spanish pilot case which was identified as Marginal 

Land (ML) in the context of Task 2.3. Furthermore, within the MAIL project, this area 

was chosen as a study case to investigate the potential of certain indicators 

(Vegetations Indices, topographic measures, etc.) in improving the estimation of Above 

Ground Biomass (AGB). For this task, a Remote Sensing and Machine Learning based 

approach was proposed.  

Overall, indicators or features extracted from the Sentinel-2 Summer image were 

selected more often than Winter features by all the tested models. Out of the 63 initially 

generated variables, only 23 features selected by Mean Decrease in Impurity (MDI) 

were used for the final model. The highest-ranking features by their importance are: 

biophysical parameters (LAI, LAI cw, FAPAR) from the summer month, the Digital 

Elevation Model (DEM), a SWIR band (band 12) and a Chlorophyll index generated 

from the red-edge bands (Clre), both from the summer month. 

Model explanation with SHapley Additive exPlanations (SHAP) helped gathering more 

insights on the input features and their influence on the model output. It was found that 

high values of a Vegetation Index generated from the red-edge bands and biophysical 

parameters extracted from the summer season, lead to an increase in predicted AGB. 

The same positive behavior was found for certain biophysical parameters extracted 

from the Autumn Season. In contrast, high values of the summer SWIR band and high 

elevation pushed the predicted AGB to values lower than the baseline. Those findings 

agree with the scientific consensus on the relationship between elevation and biomass. 

The insights gathered with SHAP showed the utility of a model explainer for the 

scientific community.  

Concerning the prediction of AGB, a recurrent limitation was found. For all the tested 

models, AGB values lower than 40-50 t/ha were slightly overpredicted whereas values 

higher than 150-160 t/ha were underpredicted. As it was confirmed by previous studies 

(Galidaki, et al., 2017; Salem et al., 2020; Forkuor, et al., 2020), this is a typical issue 

when estimating AGB with the use of Machine Learning and satellite images, and it is 

exacerbated by a limited number of representative samples for low and high values of 

the forestry inventory. 
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For those areas of the pilot case identified as suitable for plantation by Task 2.3, three 

groups were proposed: lands with high suitability for plantation (ML1), lands with low 

suitability for plantation (ML2), and unsuitable lands (ML3). Therefore, Task 4.2 

proposed a reforestation scenario for the first 2 groups by estimating their Carbon 

Carrying Capacity (CCC) 50 years after plantation. Hence, this report delineates the 

Carbon Sequestration Capacity (CSC) for those areas identified as ML1 and ML2. 

Finally, we suggest that future reforestation projects should focus on highly suitable 

areas, because these show a higher CSC compared to ML2, reaching an increasing in 

carbon sequestration up to almost 100 t/ha after reforestation. 

4. CARBON SEQUESTRATION CAPACITY GROUPS MAPPING AT EUROPEAN 

LEVEL 

This chapter presents a new approach for classifying MLs into Carbon Sequestration 

Capacity groups at European scale that was developed along with a tool in GEE to be 

embedded in a Decision Support System in the MAIL geoportal. It also presents the 

datasets selected for the implementation of the task and the pre-processing required. 

4.1. Methodology and Approach 

The methodology that presented in this section relates in how MLs can be classified in 

Carbon Sequestration Capacity (CSC) groups. In order to estimate CSC for MLs and 

classify in CSC groups, it is crucial to estimate potential suitable species for 

afforestation and their Aboveground Biomass Carbon. The MLs as calculated on Task 

2.3 is the basemap, where the most frequent species from neighbor forested areas, 

both dominant 1 and 2 species, and species’ Aboveground Biomass Carbon values are 

assigned. Dominant 1 and 2 species of neighbor forested areas are adapted to the 

ecological and climatological conditions and therefore are considered to be the most 

suitable for afforestation projects. Also, species’ Aboveground Biomass Carbon is used 

as indicator of the potential maximum capacity, which MLs never acquire as by default 

have productivity restrictions. 

4.2. Google Earth Engine implementation 

For the implementation of the task, due to the extent, size, and resolution of the data, 

as well as for compatibility with the MAIL geoportal, this task was implemented on 

Google Earth Engine (GEE). 
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GEE is a cloud-based platform for planetary-scale geospatial analysis that brings 

Google's massive computational capabilities to bear on a variety of high-impact societal 

issues including deforestation, drought, disaster, disease, food security, water 

management, climate monitoring and environmental protection. It is unique in the field 

as an integrated platform designed to empower not only traditional remote sensing 

scientists, but also a much wider audience that lacks the technical capacity needed to 

utilize traditional supercomputers or large-scale commodity cloud computing resources 

(Gorelick, et al., 2017). Some of the main benefits of GEE are the large data catalog in 

combination with massive CPU and its speed and ease of use. GEE was launched in 

2010 by Google as a proprietary system, but it is free to non-commercial educational, 

research, and nonprofit use. 

The service utilizes cloud computing to enable different formats of data to be accessed, 

shared and integrated. This has entailed creating not only an infrastructure with 

petabyte-scale capability, but also APIs, using JavaScript and Python, that enable the 

addition and manipulation of various data. By placing multi-petabyte catalog of satellite 

imagery and geospatial datasets with planetary-scale analysis capabilities and the tools 

needed to access, filter, perform, and export analyses in the same easy to use 

application, users are able to explore and scale up analyses in both space and time 

without any of the hassles traditionally encountered with big data analysis. Constant 

development and refinement have propelled GEE into one of the most advanced and 

accessible cloud-based geospatial analysis platforms available. 

4.3. Dataset selection 

4.3.1 Tree species in Europe according to European Forest Institute (EFI) 

Brus et al. (2011) publish a statistical map of tree species in Europe. This map 

represents the spatial distribution of twenty tree species groups over Europe at 1x1Km 

resolution where the ICP-Forest Level-I plot data were extended with the National 

Forest Inventory (NFI) plot data of eighteen countries. 

Basic dendrometric data were gathered for 260,000 national forest inventory plot 

locations from 17 countries. In areas with national forest inventory data, area 

proportions covered by the 20 species were obtained by compositional kriging. For the 

rest of Europe, a multinomial logistic regression model was fitted to ICP-level-I plots 

using various abiotic factors as predictors (soil, biogeographical zones, bioindicators 

derived from temperature and precipitation data). The regression results were 
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iteratively scaled to fit NUTS-II forest inventory statistics and the European Forest Map. 

The predictions for the twenty tree species were validated using 230 plot data 

separated from the calibration. Figure 13 demonstrates the aggregated results. 

 

Figure 13: Aggregated results showing the dominant species at 1x1km. 

(Source: https://www.efi.int/knowledge/maps/treespecies) 

Table 5: Technical specifications of Tree species maps for European forests dataset. 

Specification 

File name: Tree species in Europe 
according to European Forest Institute (EFI) 

Coordinate system: ETRS89 LAEA 

Production date: 2012 

Spatial Coverage:  Europe 

Spatial Resolution: 1km 

Completeness: Complete 

File type, format: Raster, TIFF image 

https://www.efi.int/knowledge/maps/treespecies
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4.3.2. Global Aboveground and Belowground Biomass Carbon Density Maps 

Global Aboveground and Belowground Biomass Carbon Density Maps are available in 

Google Earth Engine and allow to distinguish between Aboveground Biomass Carbon 

Density (AGBC) and Belowground Biomass Carbon Density (BGBC). To harmonize the 

biomass for all the ecosystems around the world, layers listed in Table 1 “Data sources 

used to generate harmonized global maps of above and belowground biomass carbon 

density” used as published on Harmonized global maps of above and belowground 

biomass carbon density in the year 2010 (Spawn et al., 2020). 

This dataset provides temporally consistent and harmonized global maps of 

aboveground and belowground biomass carbon density for the year 2010 at a 300 m 

spatial resolution. The aboveground biomass map integrates land-cover specific, 

remotely sensed maps of woody, grassland, cropland, and tundra biomass. Input maps 

were amassed from the published literature and, where necessary, updated to cover 

the focal extent or time period. The belowground biomass map similarly integrates 

matching maps derived from each aboveground biomass map and land-cover specific 

empirical models. Aboveground and belowground maps were then integrated 

separately using ancillary maps of percent tree cover and landcover and a rule-based 

decision tree. Maps reporting the accumulated uncertainty of pixel-level estimates are 

also provided (Spawn et al.,, 2020). 

Aboveground living biomass carbon density includes carbon stored in living plant 

tissues located above the earth’s surface (stems, bark, branches, twigs). It does not 

include leaf litter or coarse woody debris that was once attached to living plants but 

have since been deposited and are no longer living. Belowground living biomass 

carbon density includes carbon stored in living plant tissues located below the earth’s 

surface (roots). This does not include dead and/or dislocated root tissue, nor does it 

include soil organic matter. Woody cover includes any vegetation whose biomass is 

primarily composed woody biomass (e.g., trees and shrubs). Herbaceous cover 

includes any vegetation whose biomass is primarily composed of leaf-like matter (e.g., 

grasses and many crops) (Spawn et al., 2020). 
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Table 6: Technical specifications of Global Aboveground and Belowground Biomass 

Carbon Density Maps. 

Specification Properties of the GeoTIFFs 

File name: Global Aboveground and 
Belowground Biomass Carbon Density 
Maps 

Bands: 1 

Coordinate system: EPSG: 4326 Scaling: 0.1 

Spatial Coverage:  Global Data units: Mg C/ha 

Spatial Resolution: ~300 m (0.002777778 
degree) 

Data type: UInt16 

Temporal Coverage: 2010-01-01 to 2010-
12-31 

No data value: 65536 

Temporal Resolution: Annual Map units: degree 

File type, format: GeoTIFF (.tif) format 

Table 7: File names and descriptions of Global Aboveground and Belowground Biomass 

Carbon Density Maps. 

File name Units Description 

aboveground_biomass_carbon
_2010.tif 

Mg 
C/ha 

Aboveground living biomass carbon stock 
density of combined woody and 
herbaceous cover in 2010. This includes 
carbon stored in living plant tissues that 
are located above the earth’s surface 
(stems, bark, branches, twigs). This does 
not include leaf litter or coarse woody 
debris that were once attached to living 
plants but have since been deposited and 
are no longer living. 

belowground_biomass_carbon
_2010.tif 

Mg 
C/ha 

Belowground living biomass carbon stock 
density of combined woody and 
herbaceous cover in 2010. This includes 
carbon stored in living plant tissues that 
are located below the earth’s surface 
(roots). This does not include dead and/or 
dislocated root tissue, nor does it include 
soil organic matter. 
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File name Units Description 

aboveground_biomass_carbon
_2010_uncertainty.tif 

Mg 
C/ha 

Uncertainty of estimated aboveground 
living biomass carbon density of combined 
woody and herbaceous cover in 2010. 
Uncertainty represents the cumulative 
standard error that has been propagated 
through the harmonization process using 
summation in quadrature. 

belowground_biomass_carbon
_2010_uncertainty.tif 

Mg 
C/ha 

Uncertainty of estimated belowground 
living biomass carbon density of combined 
woody and herbaceous cover in 2010. 
Uncertainty represents the cumulative 
standard error that has been propagated 
through the harmonization process using 
summation in quadrature. 

4.3.3. S2GLC 

S2GLC land cover map is one the most detailed pan-European land cover products. It 

was produced using automatic classification approach and Sentinel-2 images from 

2017. It contains 13 classes with MMU equal to Sentinel-2 pixel which is 10×10 m. The 

overall accuracy is 86%. The product is available in two forms: mosaic for the whole 

Europe, Sentinel-2 tiles. 

Table 8: Technical specifications of the S2CLG layer. 

Specification Source data specification 

File names: 
2GLC_Europe_2017_v1.2_grey.tif 

Sensor: Sentinel-2 

Coordinate system: ETRS89 LAEA Data type: Thematic mapper 

Production date: 2017 Sensor resolution:10 m  

Coverage (top L, BR coordinates): Europe Acquisition date:  

Grid size: 10 x 10 m Grid size: - 

Position accuracy: - Positional accuracy: - 

Vertical accuracy: - Vertical accuracy: - 

Completeness: Complete 

File type, format: Raster 
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Table 9: Land Cover Classes of the S2CLG layer. 

BASEMAP 
LAYER 

Land Cover Classes 

ID Name 

Land Cover 
Map of 

Europe 2017 
(S2GLC) 

0 Clouds 

62 Artificial surfaces and constructions 

73 Cultivated areas 

75 Vineyards 

82 Broadleaf tree cover 

83 Coniferous tree cover 

102 Herbaceous vegetation 

103 Moors and Heathland 

104 Sclerophyllous vegetation 

105 Marshes 

106 Peatbogs 

121 Natural material surfaces 

123 Permanent snow-covered surfaces 

162 Water bodies 

4.4. Dataset pre-processing 

In order to apply the methodology for mapping CSC groups at European level, all three 

datasets needed necessary data preprocessing, such as handling missing or null 

values, remove errors and data transformation to make the various data consistent. 

The datasets imported as assets in Google Earth Engine, reprojected in EPSG:3035 

projection and resampled to 10m resolution, to match soft layers as produced on Task 

2.3. 

Tree species maps for European forests, consist of 20 tree species rasters with values 

from 0 to 100 which is the percentage share of the respective tree species from land 

area. These rasters were reclassified by a 5% interval, combined in one raster and 

processed in order to detect the dominant 1 and 2 species. Finally, 4 singleband 

rasters were produced: Dominant 1 Species, Dominant 1 Percent, Dominant 2 Species 

and Dominant 2 Percent as shown on Figure 14. 
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Figure 14: Tree species maps for European forests workflow 

Because of the original resolution of Tree species maps for European forests and the 

limited extent, in order to cover all forested areas, focal mode was applied, a 

morphological operation implemented on Google Earth Engine, configured and 

repeated in ranges from 500m to 30km, both for Dominant 1 and 2 Species. The 

results from both operations were composed into new images, using mosaic, with 

calculated images arranged from 30km to 500m, to preserve accuracy, as the last 

image is on top. 
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Figure 15: Dominant 1 Species workflow 
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Figure 16: Dominant 2 Species workflow 

The same workflow applied also on S2GLC data in order to combine it with Dominant 1 

species layer and provide info for forested areas with no data in the EFI Tree species 

maps like areas in Cyprus, areas near coastline and some other islands. 

Firstly, the tree cover pixel values selected, conifers and broadleaves, by masking the 

layer with these pixel values and then focal mode was applied in ranges from 100m to 

100km. The results were composed into a new image, using mosaic, with calculated 

images arranged from 100km to 100m and then reclassified to match Dominant 1 

species classes. Finally, Tree species maps were combined with S2GLC data in order 

to produce a tree species map for all European forested areas.  
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Figure 17: S2GLC Land Cover Map of Europe 2017 workflow 

 

Figure 18: Dominant 1 Species layer workflow 
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Since Global Aboveground and Belowground Biomass Carbon Density Maps allows to 

distinguish between AGBC and BGBC, the AGB band was selected in order to 

calculate through map algebra the AGBC of Dominant 1 and 2 species. For this case, 

map algebra used by multiplying AGBC with Dominant 1 Species layer and with 

Dominant 2 Species layer separately and then focal mode was applied for ranges 

from 500m to 30km, same as previously. Finally, mosaic was used to produce AGBC 

for Dominant 1 Species and AGBC for Dominant 2 Species. 
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Figure 19: Aboveground Biomass Carbon workflow 

4.5. Classification into CSC groups 

The results from processing the workflows previously analyzed are multiple rasters. 

These rasters were combined with layers of previous tasks, Hard and Soft, composed 

to a multiband raster with 10m spatial resolution providing bands with information as 

shown on Table 10. 

Table 10: Final ML raster 

Final ML raster (multiband) 

Bands Values 

Hard 1: Marginal Land 

Soft 
0.41 ‐ 10.3: low to high 
marginality 

Dominant 1 species 

1: Abies spp 
2: Alnus spp 
3: Betula spp 
4: Carpinus spp 
5: Castanea spp 
6: Eucalyptus 
7: Fagus spp 
8: Fraxinus spp 
9: Larix spp 
10: Broadleaves 
11: Conifers 
12: Pines misc 
13: Quercus misc 
14: Picea spp 
15: Pinus pinaster 
16: Pinus sylvestris 
17: Populus spp 
18: Pseudotsuga menziessi 19: 
Quercus robur & Quercus 
petraea 

Dominant 2 species 
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Final ML raster (multiband) 

Bands Values 

20: Robinia spp 

Dominant 1 percent 
0 ‐ 100: Percentage share of 
the respective tree species 
from land area 

Dominant 2 percent 
0 ‐ 50: Percentage share of 
the respective tree species from 
land area 

AGBC 0 ‐ 236: Mg C/ha 

AGBC for D1 species 0 ‐ 236: Mg C/ha 

AGBC for D2 species 0 ‐ 236: Mg C/ha 

AGBC mean 
(AGBC for D1 species + 
AGBC for D2 species)/2 

0 ‐ 236: Mg C/ha 

For the estimation of Carbon Sequestration Capacity, a formula used in which AGBC 

mean, productivity value and weight factor of 70% multiplied. From these three 

variables, AGBC mean is the mean value calculated from AGBC for D1 species - 

AGBC for D2 species and productivity value is calculated on task 2.3 for each ML. The 

weight factor of 70% is defined as the upper limit of a ML’s CSC after being afforested, 

compared to neighbor forested areas, because MLs by default have productivity 

restrictions. 

𝑨𝑮𝑩𝑪 𝒎𝒆𝒂𝒏 ×  𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒗𝒊𝒕𝒚 𝒗𝒂𝒍𝒖𝒆 ×  𝑾𝒆𝒊𝒈𝒉𝒕 𝒇𝒂𝒄𝒕𝒐𝒓 𝟕𝟎% 

Equation 4.  Carbon Sequestration Capacity (European level) 

Because of the extent of the study area, covering the whole Europe, the available data 

regarding AGBC which refer to 2010 and the fact that CSC of MLs may change from 

year to year due to various reasons and factors, the formula’s results do not represent 

the maximum C stock that can be obtained. The results of the formula serve 

classification purposes only. Through classification into CSC groups, we get a better 

understanding regarding the relative interconnections between groups and each one's 

potential trend. 

In order to discover and present the frequency distribution of the formula’s results, a 

histogram plotted. Classification into CSC groups was done by manually defining 
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classes ranges, in such a way so each class to cover approximately the same area 

across Europe, with the exception of higher and lower sequestration groups, Group A 

and Group E respectively. Group A represents higher sequestration MLs, covering 5% 

of Europe’s total MLs and on the other side Group E represents lower sequestration 

MLs covering 31% of Europe’s MLs. 

 

Figure 20: Histogram of CSC values for European level 

 

Figure 21: Groups’ distribution in percentages for European cover 
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4.6. Google Earth Engine Tool 

From the findings of this chapter, a tool was also developed to be accommodated to 

the MAIL geoportal, into the Decision Support System under the name “Potential 

Suitable Species”. 

The purpose is to provide a general overview regarding Carbon Sequestration Capacity 

Groups (CSC Groups) and to suggest Potential Suitable Species for afforestation. The 

CSC groups are calculated based on the methodology applied for the whole Europe 

and Potential Suitable Species on presence frequency in the neighbor forested areas, 

ranked according to dominance. 

The analysis occurs at a user’s defined level (student, stakeholder, etc.) by drawing or 

inserting a specified Area Of Interest (AOI; *.geojson). The AOI information is displayed 

on three relative pie charts, one for CSC Groups and another two for species, dominant 

1 and dominant 2. In each relative pie chart, the results illustrate the participation 

percentages in the AOI. 

There is no specified limit in the AOI extend. However, the tool designed for parcel 

scale analysis. Therefore, it is suggested not to exceed 100,000 ha, as the accuracy is 

inversely proportional to the AOI. 

 

Figure 22: Potential Suitable Species tool menu 



[D2.6] MLs classification in Carbon sequestration capacity groups 

 

 

[50|58] 

The tool scope is a broader approach in European level. Thus, by no means can 

substitute an in-situ analysis, that takes into account more aspects such as micro-

climate, ecological zone, elevation, soil attributes, plant indicators, etc. 

 

Figure 23: Potential Suitable Species tool results 

4.7. Discussion & Conclusions 

In this chapter a methodology for classifying MLs into CSC groups was developed. It 

would not be possible to apply the same methodology applied at pilot site level. Due to 

the extent of the study area and the time frame of the task, field measurements or 

remote sensing wouldn’t be feasible. 

The classification performed by developing a new methodology and using freely 

available data. Estimating potential suitable species for afforestation and their AGBC 

were crucial in order to estimate MLs’ CSC. Detailed workflows were created that 

describe every step of the preprocessing of the datasets that used for the MLs 

classification into CSC groups as well as for estimating potential suitable species for 

afforestation. 

Following the collection and combination of all the appropriate datasets required for the 

methodology, a formula developed in which AGBC mean, productivity value and a weight 

factor of 70% are multiplied to estimate CSC (𝑨𝑮𝑩𝑪 𝒎𝒆𝒂𝒏 ×  𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒗𝒊𝒕𝒚 𝒗𝒂𝒍𝒖𝒆 ×

 𝑾𝒆𝒊𝒈𝒉𝒕 𝒇𝒂𝒄𝒕𝒐𝒓 𝟕𝟎% 
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Equation 4). MLs were classified in five groups by manually defining classes’ ranges, 

Group A to E, from higher to lower sequestration groups. MLs classified into CSC 

groups with 2010 as reference year and each group does not represent the maximum 

C stock that can be obtained, but classification purpose is to give a better 

understanding regarding relative interconnections between groups. MLs’ CSC and the 

groups may change from year to year due to various reasons and factors. 

The GEE platform used for the implementation of the MLs classification into CSC 

groups and also for the development of a tool to be embedded in MAIL geoportal, in 

the Decision Support System. The tool provides the stakeholders with the option to 

display CSC groups and potential suitable species for afforestation for the areas of 

their interest. 
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