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EXECUTIVE SUMMARY 

The methodology that was developed in Task 2.3 of the MAIL project for the detection 

of potential marginal lands (ML) involves the search, acquisition, and processing of 36 

environmental and socio-economic factors/layers from various sources. Additionally, this 

analysis was based on 2017-’18 data and each of these products is updated with 

different frequency, which can vary from yearly to every 5 or 10 years, depending on the 

scale of the product. The scope of this Task is to develop a methodology for the detection 

of MLs with freely available satellite imagery, by harnessing the high spatial and temporal 

resolution of these missions. 

Therefore, a new tool was developed on the Google Earth Engine for the purposes of 

the Task 2.8 “Augment precision in MLs detection”, which is essentially a supervised 

classification algorithm. The classifier utilized for this study is the Random Forest 

supervised classifier, and the methodology exploits the Sentinel-1 (GRD) and Sentinel-

2 (SR, L2A) image collections as well as some Hard Layers developed in previous Tasks. 

A similar with the Task 2.4 accuracy assessment workflow was also developed for this 

Task, since a direct comparison with the outcome of 2.3 would take place to validate the 

performance of the tool.  

The “Enhanced Classification” tool manifested a comparable accuracy with the results 

of Task 2.3, although it did not manage to surpass it in terms of the accuracy metrics that 

were computed. This inferiority was hypothesized to be due to the quality of the training 

sampling data for the ML class. Thus, a case study was performed deploying a portion 

of the reference data of Task 2.4 for training and the rest for validation in the accuracy 

assessment. The accuracy assessment manifested a clear increase in all of the 

investigated metrics, revealing that the “Enhanced classification” tool is a reliable tool for 

the detection of MLs, if training data of high quality is provided. Most importantly though, 

it is a tool that extends the functionality of the detection methodology developed in Task 

2.3 only for 2017-’18, to any point in time from 2017 onwards without the tedious process 

of acquiring a bundle of bulky data. 
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1. INTRODUCTION 

The definition of marginality, or more precisely marginal land, differs according to the 

final goal of the study. In monetary terms marginal lands are those lands which have a 

negative economic output, e.g. the investment of resources into the land is higher than 

expected monetary gain. Ecological definitions on the other hand define marginal lands 

in terms of their biophysical resource composition (often the scarcity thereof). (D2.1 

“Literature review and existing models report” and D2.3 “Report on Methodology 

development”). Because of the big variations in its definition, more than 130 different 

factors (variables) have been related to the identification of MLs. For the development of 

the detection methodology for MLs in Task 2.3, more than 30 distinct layers acquired 

from various sources across Europe were deemed crucial for the identification of MLs.  

These layers were used either as “hard” or as “soft” constraints inside a ML classification 

procedure. Each factor was given a specific weight based on its perceived or estimated 

importance for the definition of marginality. The entire marginal land mapping 

methodology can be seen in Deliverable 2.3. It was developed based solely on fixed in 

time data, for the year 2017-2018.  

The scope of this Task is to develop a methodology to augment the precision of marginal 

lands map by combining the outcomes of the Tasks 2.3 and 2.4. Nevertheless, one key 

difference of the methodology that will be followed in Task 2.8 compared to the one 

followed in Task 2.3, is the source of data; instead of acquiring data from various sources 

only freely available satellite data will be used. Consequently, instead of the tedious 

process of acquiring a large volume of specialized and sophisticated data for the whole 

Europe, which also come with separate inherent uncertainties and are updated in sparse 

and unequal intervals, only the readily available satellite imagery will be acquired. Thus, 

only a single source of uncertainty is introduced in the analysis, which is also typically 

documented for each of these products. More importantly though, the competitive 

superiority of this methodology is the ability to harness the temporal capabilities of 

satellites, providing up-to-date thematic maps for any point in time, instead of a fixed 

point in time.  

Having said that, the aim of this Task is to augment the precision of the detection of MLs 

by utilizing publicly available satellite data. More specifically the objectives of this study 

are to: 
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● Develop a methodology for an “on-the-fly” detection of MLs applying a time series 

analysis based on satellite imagery on the Google Earth Engine platform, 

● Assess the performance of the algorithm by deploying the validation polygons of 

Task 2.4, and 

● Evaluate the potential of the algorithm in a case study using input (training) data 

of higher quality.
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2. LITERATURE REVIEW 

To identify the most robust methods for identification of marginal lands using satellite 

imagery, a detailed literature review was performed. Most of the research focused on 

national level (e.g. (Peterson & Aunap, 1998), (Löw et al., 2015), (Kolecka, 2021)) 

and high resolution satellite imagery delivered by Landsat satellites (e.g. (Peterson & 

Aunap, 1998), (Dara et al., 2018), (Yin et al., 2018)). In most of the analysed research 

papers, time series of NDVI were used to identify classes related with land 

abandonment; mostly from agricultural lands. Sensors, locations, and algorithms 

applied are summarized in Table 1. 

Table 1. The summary of literature review about marginal lands detection using satellite 

imagery. 

Paper 
Satellite 

data 
Area of 
interest 

Summary 

(Peterson 
& Aunap, 
1998) 

Landsat Estonia 

Knowledge based, step by step, classification 
approach. Starting from classification into land and 
water, forest and no forest, masking out wetlands, 
urban areas and mines. Result presents difference 
in area of arable lands on district level between to 
moments in time: 1990 and 1993. 

(Kuemmer
le et al., 
2008) 

Landsat 
Poland, 

Slovakia, 
Ukraine 

Firstly forest, water and built-up areas are masked 
out. Secondly, supervised change detection 
algorithm based on SVM is applied on three 
classes: unchanged areas, fallow land, 
afforestation areas. Overall accuracy reached 
91%. 

(Bai et al., 
2008) 

AVHRR 

Argentina, 
China, 
Cuba, 

Senegal, 
South 

Africa, and 
Tunisia 

Analyse of NDVI time series, adjusted with the 
rainfall. Land degradation is indicated by a 
declining trend of climate-adjusted net primary 
productivity. 

(Alcantara 
et al., 
2013) 

MODIS 
Eastern 
Europe 

Supervised SVM-based algorithm applied on NDVI 
product (8-days composites) and four classes: 
active agriculture, forest, abandoned agriculture, 
other. Overall accuracy reached 49%. 

(Liu et al., 
2015) 

NOAA, 
GIMMS 
NDVI3g 

Earth 
Analysis of greening and browning trends on global 
scale, divided into three periods of time (1982–
1994, 1995–2004 and 2005–2012).  
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(Löw et 
al., 2015) 

Landsat 
Kazakhsta

n 

Annual classifications for period 2009-2014. 
Analysis of trajectory of changes to detect crop 
abandonment into 3 classes: 

• five year lasting cover of shrubs or bare soil; 

• transitions of bare soil to herbaceous vegetation 

• transitions from herbaceous vegetation to shrub 
(both assumed to indicate different stages of an 
on-going succession of vegetation on 
abandoned fields. 

(Carlson 
et al., 
2017) 

MODIS, 
Landsat 

Ecrins 
National 

Park 
(French 

Alps) 

Identification of greening trends on a small area in 
high Alps based on maximum NDVI trend 
estimations. 

(Dara et 
al., 2018) 

Landsat 
Northern 

Kazakhsta
n 

Investigation of cropland and non-cropland 
classes, based on Random Forest classifier and 
temporal segmentation of LandTrend with annual 
time series of probabilities. 

(Yin et al., 
2018) 

Landsat 

Georgia 
and the 
North 

Caucasian 
Federal 

District of 
Russia 

Spatial (in eCogniition) and temporal (LandTrend) 
segmentation used to estimate the probability of 
agricultural land calculated from Random Forest 
based model. Identified classes included: 
agricultural land abandonment, stable agricultural 
land, fallow and re-cultivation. 

(Kolecka, 
2021) 

Landsat Poland 

Greening as an indicator of agricultural land 
abandonment. Classification based on LandTrend 
and aggregated annual and seasonal spectral 
indices. 

3. DATA ACQUISITION 

One of the outcomes of the MAIL project is the a web-application (MAIL Map Portal), 

encompassing all the tools that have been developed for the purposes of this project, in 

the form of thematic maps and tools. For the objectives of such a project dealing with 

Pan-European GIS and Earth Observation data, the Google Earth Engine was deemed 

as the most appropriate platform for a set of reasons. 

Google Earth Engine (GEE) is a cloud-based platform designed to make planetary-scale 

geospatial analysis possible not only for remote sensing experts, but also for a much 

broader audience that lacks the technical background required to deploy 

supercomputers or large-scale cloud computing services. By utilizing Google’s massive 

computational capabilities, researchers are able to work on large-scale investigations 

that have a high impact on the society and environmental management like 
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deforestation, drought, natural disasters, diseases, water management, climate 

monitoring, etc. (Gorelick et al., 2017). 

Therefore, the methodology for the task of “Augmenting precision in the detection of MLs” 

was developed on the GEE. The data catalog of Earth Engine entails an exhaustive 

repository of publicly available geospatial datasets, including collections from satellite 

and aerial imaging systems, as well as environmental, climatic, and socio-economic 

variables. Since one of the objectives of this study is to develop a methodology for the 

detection of MLs by utilizing freely available satellite imagery, the products of two 

Copernicus missions will be exploited; the Sentinel-1 and the Sentinel-2 image 

collections, readily available in the GEE platform, that have already been successfully 

deployed in numerous land cover and time series studies (Al-Nahmi et al., 2017; Huang 

et al., 2016; Kuc & Chormański, 2019; Lavreniuk et al., 2017; Mitri et al., 2020; Osgouei 

et al., 2019; Zollini et al., 2019). 

The Sentinel-1 mission is a constellation of two sun-synchronous, polar-orbiting 

satellites, Sentinel-1A and Sentinel-1B, launched on the 3rd of April 2014 and 25th of April 

2016, respectively. Bearing an active C-band Synthetic Aperture Radar (SAR) sensor, 

fixed at a 5.405 GHz frequency (corresponding to a wavelength of ~5.546 cm), they gain 

the advantage of being able to acquire imagery day and night, regardless of weather 

conditions (Geudtner et al., 2014). Sentinel-1 operates in four exclusive acquisition 

modes and supports operation either in single (HH or VV) or dual (HH + HV or VV + VH) 

polarization. However, the Interferometric Wide swath (IW) mode, with VV + VH 

polarization, is the main operational mode, offering a balance between consistent and 

efficient performance and decreasing operational costs. The spatial resolution in the IW 

mode of Sentinel-1 is 20 m and the revisit time of the constellation is six days at the 

Equator (ESA, 2020a). 

The Sentinel-2 mission is also a constellation of two sun-synchronous, polar-orbiting 

satellites, Sentinel-2A and Sentinel-2B, launched on the 23rd of June 2015 and on the 7th 

of March 2017, respectively. Sentinel-2 is equipped with an optical Multispectral 

Instrument (MSI) acquiring images in 13 spectral bands: four bands at 10 m, six bands 

at 20 m and three bands at 60 m spatial resolution. The full mission of the twin satellites 

is designed in a way that they will be able to offer global coverage and a revisiting time 

of five days at the Equator (ESA, 2020b).  

These missions provide image products of different levels of processing. Regarding the 

Sentinel-1 mission, the Level-1 processing Ground Range Detected (GRD) products 
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were utilized in this task, which consist of focused SAR data that have been detected, 

multi-looked and projected to ground range using the Earth ellipsoid model WGS 84 

(ESA, 2020c). The image collection in GEE is updated daily and new assets are ingested 

within two days after they become available. Earth Engine further applies the following 

pre-processing steps for each scene: Apply orbit file, GRD border noise removal, 

Thermal noise removal, Radiometric calibration, and Terrain correction. The latter 

terrain-corrected values are finally converted to decibels via log scaling (10*log10(x)) 

(Google developers, 2021). For Sentinel-2, two datasets can be found in the catalog of 

Google Earth Engine: The Level-1C orthorectified top-of-atmosphere reflectance and the 

Level-2A orthorectified atmospherically corrected surface reflectance. In order to 

minimize the atmosphere’s scattering and absorption effects from the scenes, the 

Sentinel-2 Surface Reflectance (SR) image collection was used. 

Another product that was deployed in this study is the Land Cover Map of Europe 2017, 

which is a product resulting from the Phase 2 of the Sentinel-2 Global Land Cover 

(S2GLC) 2017 project. The S2GLC 2017 product demonstrates the land cover 

classification of most of the European continent. The classification was performed using 

multi-temporal Sentinel-2 data collected during the year 2017 by applying the random 

forest classifier and existing land cover/use databases as the source of training samples. 

The S2GLC 2017 dataset is delivered with 10 m spatial resolution with a thematic legend 

composed of 13 land cover classes and a thematic overall accuracy of 86.1% on a 

continental scale (Malinowski et al., 2020). 

In addition, one of the outcomes of the Task 2.3 is going to be integrated in this 

methodology, the binary mask with 2 classes (Marginal Lands and No Marginal Lands), 

called as “ML_Hard thresholds” layer in D2.3 Conejo et al., (2021). Starting from the 

whole European area, areas that do not meet the requirements of the definition of 

Marginal Lands are incrementally excluded based on land cover type (i.e., urban areas, 

protected areas, water and forest areas, areas covered with snow, and more). The 

outcome of this procedure is the “ML_Hard thresholds” layer, entailing all the potentially 

suitable for plantation MLs. The accuracy assessment performed on the Task 2.4 for the 

aforementioned layer manifested an overall accuracy of 67.73% for all the testing sites 

merged. 

Finally, in order to be able to compare the performance of this methodology with the one 

followed in the Task 2.3, the ML and nML validation polygons provided for the scope of 
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the Accuracy Assessment on Task 2.4 will be utilized. This dataset will also be a valuable 

asset for the Case Study described in detail in Chapter 6 “Case study”. 

4. WORKFLOW DEVELOPMENT 

In this Chapter, the steps that were followed for the development of the MLs detection 

algorithm will be described. This however proved to be a challenging task, since the 

definition of marginality is a complex matter (Peter et al., 2018). For instance, land 

classified as marginal in a given place or time might be considered as productive (non-

marginal) in the other spatiotemporal context (Ciria et al., 2019; Sallustio et al., 2018). 

Hence, marginality is always relative to a certain use e.g., crop production or livestock 

grazing (Lewis & Kelly, 2014).Moreover, marginality is a dynamic phenomenon and 

spatiotemporally static characterization of marginality is unable to capture the shifting 

character of some of the factors that constitute marginality (Nalepa & Bauer, 2012). 

As it can be seen, categorization is closely related with constrains causing marginality 

and the study’s goals. As detected in definitions, the categorization of marginal land is 

usually performed focusing on a single aspect of marginality; environmental including 

constrains for biological production such as hazards or biophysical limits or economical 

performing a simple cost analysis using specific crop. 

The definition of MLs under the MAIL project as it was concluded on D2.1 “Literature 

review and existing models report” is: “Lands with significant, either environmental 

(biophysical variables) or socioeconomic, constraints and with potential to impact 

national accounting for C stock, excluding agricultural lands and other valuable areas 

(protected areas, uses with local importance etc.). Dynamic and variability are key 

concepts for marginal land identification. (…) MAIL project will focus on areas in which 

it is possible to convert them to forest lands.”  

Consequently, marginality is driven by three main forces: environmental factors, 

socioeconomic factors and cultural factors. A satellite image analysis, however, is based 

primarily on phenological characteristics, thus the socioeconomic and cultural factors are 

challenging to incorporate. Having said that, this task aims to develop an algorithm that 

will abide by the MAIL definition and take as many as possible of the factors that drive 

marginality into consideration, while bearing in mind the limitations that such task entails. 
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4.1 Exploratory steps 

A series of trials were conducted for this reason until the finalization of the MLs detection 

algorithm and a brief overview of the steps taken will be given in this section. A literature 

review on the detection of MLs using remote sensing data manifested that the 

Normalized Difference Vegetation Index (NDVI) is frequently used as a proxy in such 

investigations, since a potential deviation from the norm may indicate land degradation 

and improvement (Bai et al., 2008).  

The NDVI is a well-established and commonly used vegetation index in earth observation 

studies because it is roughly correlated with green plant biomass and vegetation cover 

(Box et al., 1989; Tucker, 1979) The NDVI is an index based on the relative reflectance 

values in the red and near infrared (NIR) spectrum and is computes as: 

𝑁𝐷𝑉𝐼 =
𝜌𝑅𝑒𝑑 − 𝜌𝑁𝐼𝑅

𝜌𝑅𝑒𝑑 + 𝜌𝑁𝐼𝑅
 

The amount of solar energy reflected by vegetation cover in the red wavelength depends 

primarily on chlorophyll content, whereas the amount of solar energy reflected by 

vegetation in the NIR wavelength is influenced by the amount and the condition of green 

biomass, leaf tissue structure, and water content (Jensen, 1996). Initially, the Normalized 

Difference Vegetation Index (NDVI) values, as well as the values’ trends, of known ML 

and nML areas (Task 2.4 validation polygons) were explored for a 5 years period (2015-

2020), under the hypothesis that the NDVI values of ML and nML parcels would be 

distinct or show a consistent temporal trend pattern. Nevertheless, the NDVI values of 

the ML parcels exhibited a significant variance among the test countries, but also among 

the different parcels residing in the same country, and no specific trend could be 

detected. This led to the decision to integrate a different time series analysis, the 

harmonic model. 

Harmonic analysis, also termed spectral analysis or Fourier analysis, decomposes a time 

dependent periodic phenomenon into a series of cosine waves (terms) and an additive 

term (Davis & Sampson, 1986; Rayner, 1971). Each wave is defined by a unique 

amplitude and phase, where the amplitude value is half the height of a wave, and the 

phase is the difference between the start of the year and the peak of the wave over the 

range 0–2π (Figure 1). Each harmonic term accounts for a proportion of the variance in 

the original time series data-set and much like the principal component analysis, the first 

two terms (components) entail the majority of the variance in a data set (Jakubauskas et 

al., 2002).  
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Figure 1. Harmonic model (Clinton, 2017) 

In this step of the exploratory analysis, the hypothesis was that a scatterplot of amplitude 

vs phase values for a given area of various distinct land cover types, would manifest 

distinct clusters, representing each land cover (LC). In other words, it was expected that 

the urban LC for example would take over the lower part of the plot since no significant 

vegetation exists so the amplitude would be close to zero. Forest LC should exhibit a 

cluster in the high amplitude and medium phase part of the plot, and so on. This 

hypothesis was not rejected by visual interpretation of the exploratory results; however, 

human interpretation would fail to identify all the underlying patterns and aspects in such 

dataset. Hence, a machine learning classification algorithm was deemed necessary for 

an in-depth exploitation of the NDVI harmonic model time series analysis. 

4.2 Classification Algorithm 

The machine learning classification algorithm chosen for this study is the Random Forest 

(supervised classifier). Random Forest (RF) has been applied in many recent studies 

and real-life applications in a variety of domains, since it is a computationally efficient 

method capable of operating promptly over large datasets (Oshiro et al., 2012). Another 

reason that contributed in the popularity of this technique is the fact that they require a 

minimum input from the user, having only few parameters to tune, which makes it an 

attractive tool for people that are not experts on machine learning algorithms (Biau & 

Scornet, 2016). The RF classifier, also comes with a neat feature, the out-of-bag error 
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estimate, which is computed on the observations set aside by the resampling before the 

tree building, which offers a quick way to check the performance of the model and fine 

tune the parameters, without the need of a validation set (Kruppa et al., 2013). 

Random Forest is an unweighted ensemble classifier, meaning that it combines the 

decision of a set of classifiers by unweighted voting, to classify a given sample (Pal, 

2007). As defined by Breiman, (1999) “A random forest is a classifier consisting of a 

collection of tree- structured classifiers {h(x,Θk), k=1, ...} where the {Θk} are independent 

identically distributed random vectors and each tree casts a unit vote for the most popular 

class at input x”. Frequently, the user sets the number of trees by a trial and error manner, 

since this algorithm can work efficiently with large datasets and has been proven not to 

suffer from overfitting problems, although if the number of trees is significantly increased 

computational performance can take a toll (Oshiro et al., 2012).  

After experimenting with various parameter values, number of variables and at different 

regions, a relatively high number of trees (1,000) was deemed appropriate for the needs 

of this investigation. This was mainly due to the big extent of the area that would be 

classified, which means that significant variations in landscape are expected to occur, 

but also because a smaller number of trees, like 100 – 500, exhibited higher variance in 

the out-of-bag error estimates, depending on the region. The rest of the parameters for 

the RF classifier in GEE were left in their default values. 

4.3 Training data 

For any supervised classification to perform as intended and reach its true potential in 

accuracy measures, attention needs to be paid to the samples that will serve as training 

data. Since the primary objective of this Task is the detection of MLs, a simple 

classification approach identifying the major prevailing land covers, like Forest, 

Croplands, Impervious, Water and MLs was followed. To delineate the regions and 

acquire the training samples for the Forest, Croplands and Impervious LC the Hard 

Layers generated in Task 2.3 will be utilized, while for the Water bodies LC, the “Water” 

class from the S2GLC product will be extracted, since these layers provide very high 

accuracy. For the classification of MLs, though, the 2.3 “ML_Hard_Thresholds” mask, 

and more specifically the classes that include all the potentially suitable MLs, will be 

sampled. This is the best and only source of data for the whole Europe that could be 

obtained for sampling MLs training data, even though this product manifested an ~68% 

overall classification accuracy in T2.4. 
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4.4 Trials and Errors 

For the testing phase, the RF classifier was applied on Sentinel-2 imagery and a region 

in north Greece was selected as the testing site for a quick assessment of the classifier’s 

performance, since most of the validation polygons offered for the T2.4 Accuracy 

Assessment reside in this area. Initially, the Amplitude and Phase values, extracted from 

the first two terms of the Harmonic analysis of the NDVI values, were used for the 

classification of the Sentinel-2 imagery, which resulted in a 49.3% out-of-bag (OOB) error 

estimate, a 51% Overall Accuracy (OA) and a Kappa (K) value of 0.02. This triggered 

the hypothesis that adding the mean NDVI values for each pixel would be an additional 

information for the algorithm, since the value of Amplitude, essentially describes the 

variance and not the actual NDVI values. Adding the NDVI as a classification variable 

improved the performance of the classifier (OOB: 35.9%) but not the accuracy (OA: 

47.5%, K: -0.05).  

For the next trial, two more vegetation indices were introduced to the algorithm, the 

Enhanced Vegetation Index (EVI) and the Soil Adjusted Vegetation Index (SAVI). EVI is 

similar to NDVI and is also used to quantify vegetation greenness. However, EVI corrects 

for some atmospheric conditions and canopy background noise and is more sensitive in 

areas with dense vegetation. In addition to the Red and NIR bands used in NDVI, it also 

incorporates an “L” value to adjust for canopy background, “C” values as coefficients for 

atmospheric resistance, and values from the blue band and is calculated from the 

following formula (A. Huete et al., 2002): 

𝐸𝑉𝐼 = 2.5 ∗  
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝐶1 ∗ 𝜌𝑅𝑒𝑑 − 𝐶2 ∗ 𝜌𝐵𝑙𝑢𝑒 + 𝐿
 

Where C1 = 6, C2 = 7.5 and L = 1. 

SAVI is used to correct NDVI for the influence of soil brightness in areas where 

vegetative cover is low. SAVI is calculated as a ratio between the Red and NIR band 

values with a soil brightness correction factor (L) defined as 0.5 to accommodate most 

land cover types (A. R. Huete, 1988): 

𝑆𝐴𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑 + 𝐿
∗ (1 + 𝐿) 

The classification including the Amplitude, Phase, mean NDVI, EVI and SAVI achieved 

an OBB error of 34.4%, an OA of 50.2% and a K of 0.004. For the next step, it was 

understood that since the focus of the classification is mainly on the “greenness”, 
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generating mean NDVI values for three different times in the year, namely a mean NDVI 

for May, July and September, could potentially introduce valuable information to the 

algorithm. For this reason, the following 5 variables were utilized by the RF classifier, 

Amplitude, Phase, NDVI_May, NDVI_July, NDVI_September, which then achieved an 

OOB of 33%, OA of 50.5% and K of 0.01. 

Close observation to the results of the classification revealed that there was a constant 

misclassification of bare lands and mines with the Impervious LC. This is a common 

problem in Remote Sensing Land Cover Mapping applications since bare lands and 

build-up areas have similar spectral responses. Few indices have been developed to 

circumvent this challenge, however most of them, since they were developed for the 

latest Landsat missions, exploit the thermal band of the Landsat ETM+ sensor (As-

syakur et al., 2012; Zha et al., 2003). In a recent study based on Sentinel-2 imagery 

Osgouei et al., (2019) experimented with incorporating the Normalized Difference Tillage 

Index (NDTI), which makes use of the SWIR bands of Sentinel-2, aiming to enhance the 

contrast between bare land and build-up areas. NDTI is computed as follows: 

𝑁𝐷𝑇𝐼 =
𝜌𝑆𝑊𝐼𝑅 1 − 𝜌𝑆𝑊𝐼𝑅 2

𝜌𝑆𝑊𝐼𝑅 1 + 𝜌𝑆𝑊𝐼𝑅 2
 

Even though NDTI was first proposed by Van Deventer et al., (1997) for soil practices, 

tillage management, and crop residue mapping and has then been applied for 

agricultural practices and soil management, it exhibited high potential in separating 

impervious surfaces and build-up areas from bare lands in the multi-index classification 

study of Osgouei et al., (2019). Incorporating NDTI in this study further improved both 

the classifier’s performance and the respective classification accuracy, achieving an 

OOB error of 30%, an OA of 58.6% and a K of 0.17. Finally, the VV and VH polarization 

bands of the Sentinel-1 GRD IW mode were included to provide more information and 

further aid the classification capabilities of this machine learning algorithm.  

These trials indicate the fact that no single index would be adequate for a large extent 

LC classification, like the one intended in this Task, but on the other hand not all indices 

are equally important. Moreover, it was realized that sufficient and relevant information 

was required for the classifier to meet its potential. More trials were conducted with 

various combinations of the aforementioned variables, aiming to conclude on the most 

efficient set of variables for this study and the one which yielded better and more stable 

results across the various environments (Mediterranean and Central European) is 

described on the following Chapters. 
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4.5 European training image 

As it has been discussed, apart from diverse in spectral response, MLs are a dynamic 

and ever-changing “land cover”, therefore it would not be accepted to sample over the 

region that was classified as ML in T2.3, based on 2017-2018 data, in any point in time 

in the future. In other words, the area that has been delineated as potential ML for 2017-

2018, will most probably change (either expand or shrink) in e.g., 10, 20 or 30 years, as 

well as the spectral response of the various features on earth. Consequently, a Pan-

European image encompassing all the variables, based on 2017-2018 observations, 

required for the upcoming classification had to be generated. 

The workflow that was followed for the generation of this Pan-European Basemap image 

is shown graphically on Figure 2 and is described in detail in this section. Two sets of 

imagery were exploited for the extraction of the required layers; the Sentinel-1 and 

Sentinel-2 image collections, readily available from GEE’s dataset catalogues. All 

processes that will be described later in this section, are based on imagery acquired by 

the sensors from 1st of April 2017 until 1st of April 2019. This way only data that are in 

accordance with the analysis made on T2.3 are included.   
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Figure 2. Pan-European Basemap training image workflow. Source: personal compilation 

of Georgios Spanos. 

The Sentinel-1 imagery were initially filtered based on the instrument’s mode and the 

orbit’s direction pass and only the IW mode and the ascending pass images were 

acquired. Then, the mean values for every pixel for April, June and October were 

computed separately for the VV and the VH polarization acquisitions. All six layers that 

have been calculated, were ultimately concatenated in a single six-band image. 

For the Sentinel-2 images a standard cloud masking script was applied before any 

processing to remove pixels that are influenced by clouds. Then the Phase and 

Amplitude parameters from the Harmonic Model based on NDVI values were computed 

for each pixel, as demonstrated by Nicholas Clinton in the Earth Engine User Summit of 

2017. In addition, the mean NDVI value for each pixel was calculated for the months of 

May, July and September, since these months are related with the season that 

vegetation is at its highest in all of the regions of Europe. Finally, the SAVI and the NDTI 

also showed to improve the classifier’s performance, hence mean values for the whole 

time range were computed for each pixel. In the end, these seven layers were added in 

a single seven band image. 
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After the Sentinel-1 and the Sentinel-2 images encompassing all the required layers were 

generated, they were concatenated in a single 13-band image. The procedure described 

above was iteratively applied for each country of the European Union (EU) and exported 

as an asset on GEE, but because of the memory restrictions in GEE, the spatial 

resolution was reduced to 100 meters. Nonetheless, this is not expected to affect the 

quality of this study, since the minimum area under the MAIL project identified as ML 

has already been defined in D2.3 as 1 hectare (Conejo et al., 2021). Finally, a mosaic of 

the 39 countries including all 13 bands (variables), namely: Amplitude, Phase, 

NDVI_May, NDVI_July, NDVI_September, SAVI, NDTI, VV_April, VV_June, VV_ 

October, VH_April, VH_June, VH_October, was created and exported as a GEE asset. 

Having this image exported already as an asset on GEE provides a further advantage to 

the end-user of reducing the tool’s computation time in the MAIL web application. 

4.6 Classification Tool Development 

Moving on to the classification workflow the user firstly draws a polygon to specify the 

area of interest and specifies the dates’ range for which the analysis will take place. For 

this classification the user needs to define a starting and an ending date, in a way that at 

least two years of satellite imagery acquisitions are included. This means that the starting 

date cannot be less than two years prior to the current date. All the processing steps 

applied by the algorithm for the LC classification and ultimately for the detection of MLs 

are depicted on Figure 3. 
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Figure 3. MLs Classification algorithm workflow. Source: personal compilation of 

Georgios Spanos. 

Initially, the variables based on the Sentinel-1 GRD and the Sentinel-2 SR image 

collections are calculated, as they have been described in the previous section (“4.5 

European training image”) this time for the user-specified region and dates. This user-

delineated image entailing all the classification variables will be referred from this point 

onwards as “Classification Variables” image. Then, an image containing all the relevant 

for this classification LCs is created, including the delineated regions of Forests, 

Croplands, Impervious, Water bodies and MLs as distinctive bands, from the MAIL D2.3 

“Hard Layers”, the S2GLC map and the “ML_Hard_Thresholds”, as mentioned in 

Chapter “4.3 Training data”. From here on this image is going to be referred as “Training 

Raster”. 

For the training process of the RF classifier, a stratified random sampling per class is 

performed on the Training Raster, creating 1,000 random points (training points) for each 
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band (LC), in a 10 m. scale, which coincides with the resolution of the Training Raster, 

since the parent layers also have a 10 m spatial resolution. Afterwards, these training 

points are superimposed on the pre-developed Pan-European Basemap image, and the 

properties of each band are extracted to the training points. 

The RF classifier then uses these points to train itself for the desired classes (LCs) based 

on the extracted properties (classification variables), by planting 1,000 decision trees. 

Now, the classification is performed on the Classifications Variables image and map 

depicting each LC in a distinctive colour is displayed followed by the map containing only 

the MLs class. It is in this stage that the RF classifier displays all information that is 

relevant with the classification, including the number of trees planted, the number of 

classes produced, the importance of each variable for the classification process and 

OOB error estimate. For the implementation of this classification tool in the MAIL 

WebApp and to distinguish it from the MLs detection methodology developed in Task 

2.3, this tool will be referred as “Enhanced Classification”. 

4.7 Accuracy Assessment 

In order to evaluate the performance of the developed MLs detection methodology in this 

Task, an accuracy assessment methodology was developed as well, and applied on the 

resulting maps. The fundamental objective of this study is to augment the precision in 

the detection of MLs. Thus, the primary goal of this assessment methodology was that it 

had to be as similar as possible with the one developed in T2.4 of the MAIL project, so 

that the resulting values of this Task are directly comparable with the ones from D2.4 

“Report on Accuracy Assessment”. The reason this is mentioned, is because the analysis 

of T2.4 was performed on the ArcGIS and R Studio software, while this Task is developed 

on the GEE platform. The series of steps followed for the realization of this assessment 

are shown as a flowchart on Figure 4. 
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Figure 4. Accuracy Assessment methodology workflow. Source: personal compilation of 

Georgios Spanos. 

In Task 2.4 the respective project partners from each country (Greece, Spain, Germany, 

and Poland) provided reference polygons designating ML and nML areas. The same 

polygons are used in this study as well and the assessment was carried out for test sites 

of each country separately. As a first step the classified image is clipped to the extent of 

the provided polygons for the according country and is then reclassified into 1 for the ML 

class and 0 for the rest of the classes (Forest, Croplands, Impervious, Water).  

Later, the “ML – nML validation polygons” feature collection is converted to a binary 

image based on the ML/nML field (ML=1, nML=0) for a stratified random sampling to be 

performed setting a specified number of points (validation points) to be generated for 

each class. In D2.4 the authors concluded on a 1 point/ha sampling, so the resulting 

number of points allocated to each class depends on the total area of the provided 

validation polygons for each country, as shown in Table 2. In the case of Greece, the 
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specific shape of the ML reference polygons resulted in a lower number of points than 

the area suggests. The validation points are then superimposed on the clipped, 

reclassified (0-1) image, and the values of classification product, as well as the ones 

from the validation polygons are extracted to the validation points. 

Table 2. Sample points allocation per country 

Country 

ML nML 

Area [ha] 
Allocated 

points 
Area [ha] 

Allocated 
points 

Greece 7988 7988 5274 4966 

Spain 1649 1649 2199 2199 

Germany 352 352 20,914 20,914 

Poland 539 539 2463 2463 

 

Finally, an error matrix is generated based on which the accuracy metrics can be 

computed for each country; namely: the Overall Accuracy, the User’s and Producer’s 

Accuracy and the Kappa value, as well as the OOB Error Estimate generated by the RF 

classifier.  

Overall Accuracy (OA) is the ratio between the correctly classified samples to the total 

number of samples. It essentially tells us what percentage of the reference sites were 

correctly mapped out of all of them (Congalton, 1991b).  

User's accuracy (UA) is the proportion of the area mapped as a particular category that 

is actually that category “on the ground” (Congalton, 1991a). If a user employs the final 

map in order to locate a particular spatial unit, the user's accuracy gives the conditional 

probability of that map location actually representing the mapped unit. It is calculated by 

dividing the correct classified pixels in a class by the total number of pixels that were 

classified in that class (row total) and multiplying by 100 (Banko, 1998). 

Producer's accuracy (PA) is the proportion of the area that is a particular LC class on the 

ground and it is also mapped as that class (Congalton, 1991a). The producer's accuracy 

measures how well a given area is classified and provides the producer of the final 

classification map with the conditional probability of a particular location of spatial unit 

appearing as that on the map. It is computed by dividing the number of correct pixels in 
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one class by the total number of reference pixels for this class (column total) and 

multiplying by 100 (Banko, 1998). 

Kappa (K) is a measure of agreement between the predictions and the actual class. It 

can also be a comparison of the overall accuracy to the expected random chance 

accuracy. (Jensen, 1996). The statistical significance of any given classification matrix 

can also be determined by utilizing the Kappa coefficient as a basis. According to Cohen 

(1960), Kappa can be considered as the chance-corrected proportional agreement and 

takes values from +1 (perfect agreement) to -1 (complete disagreement). 

5. RESULTS 

This tool can be applied on spatially different areas, either in size or geographical latitude 

and longitude, and on different time moments. For comparison, with the Task 2.3 

outcomes, and assessment purposes, the tool was executed for the same years as the 

T2.3 methodology, 2017-2018, therefore, its performance can be visually and 

quantitively assessed and commented. For the qualitative assessment the resulting map 

from the LC classification output of the tool will be displayed for a given location, while 

for the quantitative assessment of the tool, the results of the accuracy assessment 

methodology will be presented for the four test countries. 

5.1 Land Cover classification output 

Regarding the LC classification and mapping, here we present as an example the 

resulting map of an arbitrarily selected site encompassing all desired classes, lying 

mostly in the territory of north Greece but also including some fractions from North 

Macedonia and Albania (Figure 5).  
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(a) 

 

(b) 

Figure 5. Location of example area 

 In Figure 6, the five classes of interest are depicted as produced by the Enhanced 

Classification tool. The Forest LC in green colour, the Croplands LC in orange, the 

Impervious in purple, Water in blue and MLs in red. 

 

Figure 6. Output of enhanced classification algorithm 
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Starting with the Water class, which is a distinctively delineated feature, we can see that 

the water bodies are mapped very accurately following the boundaries of the lakes. The 

rest of the classes are more challenging to assess visually. However, by overlaying the 

classified map on the Satellite view of GEE, a match of the classes appended with reality 

is indeed present for the classes of Forest and Agriculture, even though the last one is 

an admittedly a diverse class in signature response. As mentioned in a previous chapter, 

a frequent source of confusion for the algorithm was the separation of Impervious areas 

from MLs. The region highlighted at the bottom right in a white circle is the coal mine of 

DEI (electricity provider of Greece), one of the biggest in Greece, and the confusion 

mentioned before is evident there. This is very much expected though, since the spectral 

signatures of these features are very similar. The typical Impervious features, 

nevertheless, like the city of Bitola, Ptolemaida and Kozani (highlighted in black) are 

mapped accurately as well. 

 

(a) 

 

(b) 

 

(c) 

Figure 7. Comparison of ML class based on (a) Task 2.3 (black), and (b) Task 2.8 (red) 

and (c) 2.8 overlaid on 2.3 

In Figure 7(b) the ML class is extracted from the classified image in order to compare it 

with the 2.3 “ML_Hard_Threholds” image Figure 7(a). A general agreement between the 

two products is observed, since the ML class extent is on accord with the 

“ML_Hard_Thresholds” mask, covering relatively the same area with some minor 

differences. In order to provide a more accurate comparison for the ML class, the area 

of the MLs, based on the task 2.3 and the task 2.8 methodologies was computed. Out of 

the 856,179 ha of the total example area, 196,784 ha were identified as ML from the 2.3 

detection methodology, and 229,323 ha were identified as ML from the tool developed 

in this task, 2.8 (Table 3). 
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Table 3. ML area comparison for example area 

 Total Area 
MLs based 

on 2.3 
MLs based 

on 2.8 

Area (ha) 856,179 196,784 229,323 

5.2 MLs detection performance 

A quantitative assessment of the classification algorithm’s performance was also carried 

out as mentioned in chapter 4.7 Accuracy Assessment, the results of which are 

presented on the following Table 4. The UA and PA are produced for each class of 

interest, however since in this study we are mainly interested in the ML class, the values 

presented on the Table are the User’s and Producer’s Accuracy for the ML class. 

Table 4. Accuracy Assessment comparison table (2.3 vs 2.8) 

Country 
Overall 

Accuracy 
User's Accuracy 

Producer's 
Accuracy 

Kappa 
OOB 
Error 

Estimate Task 2.3 2.8 2.3 2.8 2.3 2.8 2.3 2.8 

Greece 71.5 61.4 77.7 73.7 73.9 58.1 0.41 0.23 0.26 

Spain 82.8 73.1 77.4 74.3 84.6 57.2 0.65 0.43 0.23 

Germany 60.6 54.3 3.6 41.9 90.0 88.5 0.04 0.03 0.21 

Poland 90.9 94.2 92.4 94.3 54.2 71.0 0.64 0.77 0.25 

 

The tool’s highest accuracy was achieved for the test site of Poland, where the OA 

reached a value of 94.2%, UA 94.3%, PA 71% and K a value of 0.77, which denotes 

substantial agreement. In addition, the test site of Poland was the only test site that the 

Enhanced Classification tool achieved higher values in all of the accuracy metrics 

compared with the methodology of 2.3. The test site of Poland is followed by the test site 

of Spain, in performance accuracy with an OA of 73.1%, UA 74.3%, PA 57.2% and K 

0.43. Third in rank comes the test site of Greece for which an OA, UA, PA and K of 

61.4%, 73.7%, 58.1% and 0.23 was achieved respectively. The tool’s manifested 

accuracy in the test sites of Greece and Spain is evidently lower than what was achieved 

from the 2.3 methodology. Finally, in the test site of Germany a slight reduction in OA 

(54.3% from 60.6%) and PA (88.5% from 90 %) is observed, but also a significant 

increase in UA (41.9% from 3.6%). 

Since one of the objectives of this Task was to create a tool that would augment the 

precision in the detection of MLs, these values may not seem inspiring at first. 
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Nevertheless, two things ought to be mentioned; Firstly, the temporal advantage of this 

tool should not be underestimated. Contrary to the methodology developed in Task 2.3, 

with this tool, MLs can be mapped for any place in the European boundaries and for any 

point in time from 2017, that the Sentinel-2 SR image collection is available, onwards. 

Secondly, it should be noted that this is not an assessment on the performance of the 

whole LC classification algorithm, rather than an assessment on the mapping accuracy 

of the MLs class, which is sampled from the “ML_Hard_Thresholds” layer which achieved 

an ~68% OA. 

6. CASE STUDY 

This dependency on the “ML_Hard_Thresholds” layer raises the following question: 

“What is the tool’s potential in detecting MLs, if training data of higher quality for the ML 

class are available?” 

In this Chapter the answer to this question will be explored, under the hypothesis that 

with accurate training data, the Enhanced Classification tool is able to provide 

augmented precision results. Therefore, in this case study the same methodology as 

described in Chapter 4.6 Classification Tool Development will be followed, with the only 

difference that the ML class will be sampled from a portion of the ML reference polygons, 

and the rest will be used for validation. 

This case study will be performed only for the test sites of Greece and Spain, since for 

these test sites an abundance of reference polygons was provided, for the realization of 

the Task 2.4, hence sufficient samples will be available both for the training and the 

validation of the algorithm. The workflow that was followed to split the samples into 

training and validation includes a random sampling on the reference polygons and the 

addition of an extra column with random numbers from 0 to 1. Then a threshold value is 

applied on the latter column of the ML samples and the points below the specified 

threshold are used for training of the ML class. The rest ML and all of the nML samples 

are used later for the accuracy assessment. After many trials, the appropriate threshold 

value for Greece was decided to 0.1, while for Spain 0.5. 

The same example area will be used here to compare visually how the distribution of the 

ML class changes depending on the training data input Figure 8. There is a discernible 

change between the two methods in the distribution of the ML class, and in the second 

method, the ML class is clearly more constrained. Computation-wise the occupied area 
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of the ML class in the example area based on the general methodology was 196,784 ha, 

while based on the case study methodology it has been reduced to 156,567 ha. 

 

(a) 

 

(b)  

Figure 8. ML class in example area (a) General methodology, (b) Case study methodology 

Moving on to the results of the primary aim of this case study, the accuracy assessment, 

as it was performed for the test sites of Greece and Spain, the results are summarised 

in the following table (Table 5). For the test site of Greece, the OA increased from 71.5% 

in Task 2.3, and 61.4% in the general methodology of the Task 2.8, to 77.7%, while the 

K value from 0.41, and 0.23 to 0.54 respectively. For the test site of Spain OA was 82.8% 

and 73.1% in Task 2.3 and the previous methodology respectively and reached the 

86.1% with the current one and the K value from 0.65 and 0.43 increased as well to 0.66. 

Moreover, the OOB Error Estimate, which is the generalization error as the forest-

building progresses, reduced in both cases to 0.16. 

Table 5. Accuracy assessment comparison table (2.3 vs 2.8 case study) 

Country Overall Accuracy  
(%) 

Kappa OOB Error 
Estimate 

Task 2.3 2.8 2.8 (cs) 2.3 2.8 2.8 (cs) 2.8 2.8 (cs) 

Greece 71.5 61.4 77.7 0.41 0.23 0.54 0.26 0.16 

Spain 82.8 73.1 86.1 0.65 0.43 0.66 0.23 0.16 
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7. CONCLUSIONS 

Under the framework of the MAIL project Task 2.8 “Augment precision in MLs detection”, 

the “Enhanced Classification” tool, based on the RF classifier and a time series analysis, 

was developed and is going to be incorporated in the Final MAIL Web application. The 

tool achieved a 61.4%, 73.1%, 54.3% and 94.2% OA for the test sites of Greece, Spain, 

Germany, and Poland respectively. Apart from running efficiently thanks to the RF 

classifier, the tool’s major advantage is that, thanks to the methodology developed in 

Task 2.3, it can be applied and identify potentially suitable for afforestation MLs in any 

point in time; it is therefore a futureproof tool. 

In a case study that the reference ML and nML polygons of Task 2.4 were split to training 

and validation data, the tool achieved higher accuracy in the test sites of Greece and 

Spain than the methodology of Task 2.3, proving that the tool is able to detect MLs with 

good accuracy, as long as high-quality training data for MLs are available. Furthermore, 

it is proven once again, that the RF classifier is a very efficient and accurate classifier, 

able to handle big amounts of data, as well as the fact that good input results in good 

output. 

Finally, this case study suggests that in the future the tool’s functionality should be 

extended in order the user to be able and provide its own reference data for the training 

of the ML class. Until then, the user is advised to take into consideration the OA 

documented here and utilize all the other options available in the Decision Support 

System of the MAIL web application before concluding on the final area on which the 

afforestation project will take place. 

  



[D2.7] Report on Augmenting precision 

 
 

[34|39] 

REFERENCES 

[1] Al-Nahmi, F., Saddiqi, O., Hilali, A., Rhinane, H., Baidder, L., El Arabi, H., & 

Khanbari, K. (2017). Application of remote sensing in geological mapping, case 

study Al Maghrabah area - Hajjah region, Yemen. ISPRS Annals of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences, 4(4W4), 

63–71. https://doi.org/10.5194/isprs-annals-IV-4-W4-63-2017 

[2] Alcantara, C., Kuemmerle, T., Baumann, M., Bragina, E. V., Griffiths, P., Hostert, 

P., Knorn, J., Müller, D., Prishchepov, A. V., Schierhorn, F., Sieber, A., & 

Radeloff, V. C. (2013). Mapping the extent of abandoned farmland in Central and 

Eastern Europe using MODIS time series satellite data. Environmental Research 

Letters, 8(3). https://doi.org/10.1088/1748-9326/8/3/035035 

[3] As-syakur, A. R., Adnyana, I. W. S., Arthana, I. W., & Nuarsa, I. W. (2012). 

Enhanced Built-Up and Bareness Index (EBBI) for Mapping Built-Up and Bare 

Land in an Urban Area. Remote Sensing, 4(10), 2957–2970. 

https://doi.org/10.3390/rs4102957 

[4] Bai, Z. G., Dent, D. L., Olsson, L., & Schaepman, M. E. (2008). Global 

Assessment of Land Degradation and Improvement 1. Identification by remote 

sensing. In GLADA Report 5. 

[5] Banko, G. (1998). A Review of Assessing the Accuracy of Classifications of 

Remotely Sensed Data and of Methods Including Remote Sensing Data in Forest 

Inventory. IR-98-081. 

[6] Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197–

227. https://doi.org/10.1007/S11749-016-0481-7/FIGURES/4 

[7] Box, E. O., Holben, B. N., & Kalb, V. (1989). Accuracy of the AVHRR vegetation 

index as a predictor of biomass, primary productivity and net CO2 flux. Vegetatio, 

80(2), 71–89. https://doi.org/10.1007/BF00048034 

[8] Breiman, L. (1999). Random Forests-Random Features. 

[9] Carlson, B. Z., Corona, M. C., Dentant, C., Bonet, R., Thuiller, W., & Choler, P. 

(2017). Observed long-term greening of alpine vegetation - A case study in the 

French Alps. Environmental Research Letters, 12(11). 

https://doi.org/10.1088/1748-9326/aa84bd 

[10] Ciria, C., Sanz, M., Carrasco, J., & Ciria, P. (2019). Identification of Arable 

Marginal Lands under Rainfed Conditions for Bioenergy Purposes in Spain. 

Sustainability, 11(7), 1833. https://doi.org/10.3390/su11071833 



[D2.7] Report on Augmenting precision 

 
 

[35|39] 

[11] Clinton, N. (2017). EEUS Time Series. Earth Engine User Summit. 

[12] Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational 

and Psychological Measurement, 20(1), 37–46. 

https://doi.org/10.1177/001316446002000104 

[13] Conejo, G. R., Verde, N., Georgiadis, C., Tassopoulou, M., Krupinski, M., 

Grommy, E., Aleksandrowicz, S., & Pérez, T. J. (2021). D2.3 | Report on 

Methodology development. In MAIL: Identifying Marginal Lands in Europe and 

strengthening their contribution potentialities in a CO2 sequestration strategy. 

[14] Congalton, R. G. (1991a). A review of assessing the accuracy of classifications 

of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. 

[15] Congalton, R. G. (1991b). A review of assessing the accuracy of classifications 

of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. 

https://doi.org/10.1016/0034-4257(91)90048-B 

[16] Dara, A., Baumann, M., Kuemmerle, T., Pflugmacher, D., Rabe, A., Griffiths, P., 

Hölzel, N., Kamp, J., Freitag, M., & Hostert, P. (2018). Mapping the timing of 

cropland abandonment and recultivation in northern Kazakhstan using annual 

Landsat time series. Remote Sensing of Environment, 213(May), 49–60. 

https://doi.org/10.1016/j.rse.2018.05.005 

[17] Davis, J. C., & Sampson, R. J. (1986). Statistics and data analysis in geology 

(Vol. 646). Wiley New York. 

[18] ESA. (2020a). Missions - Sentinel-1 . Sentinel Online. 

https://sentinel.esa.int/web/sentinel/missions/sentinel-1 

[19] ESA. (2020b). Missions - Sentinel-2. Sentinel Online. 

https://sentinel.esa.int/web/sentinel/missions/sentinel-2 

[20] Geudtner, D., Torres, R., Snoeij, P., Davidson, M., & Rommen, B. (2014). 

Sentinel-1 System capabilities and applications. 2014 IEEE Geoscience and 

Remote Sensing Symposium, 1457–1460. 

https://doi.org/10.1109/IGARSS.2014.6946711 

[21] Google developers. (2021). Sentinel-1 Algorithms. Google Earth Engine. 

https://developers.google.com/earth-engine/guides/sentinel1 

[22] Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. 

(2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. 

Remote Sensing of Environment, 202, 18–27. 

https://doi.org/10.1016/j.rse.2017.06.031 

[23] Huang, H., Roy, D. P., Boschetti, L., Zhang, H. K., Yan, L., Kumar, S. S., Gomez-



[D2.7] Report on Augmenting precision 

 
 

[36|39] 

Dans, J., & Li, J. (2016). Separability analysis of Sentinel-2A Multi-Spectral 

Instrument (MSI) data for burned area discrimination. Remote Sensing, 8(10). 

https://doi.org/10.3390/rs8100873 

[24] Huete, A., Didan, K., Miura, T., Rodriguez, E. ., Gao, X., & Ferreira, L. . (2002). 

Overview of the radiometric and biophysical performance of the MODIS 

vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. 

https://doi.org/10.1016/S0034-4257(02)00096-2 

[25] Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of 

Environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X 

[26] Jakubauskas, M. E., Legates, D. R., & Kastens, J. H. (2002). Crop identification 

using harmonic analysis of time-series AVHRR NDVI data. Computers and 

Electronics in Agriculture, 37(1–3), 127–139. https://doi.org/10.1016/S0168-

1699(02)00116-3 

[27] Jensen, J. R. (1996). Introductory digital image processing: a remote sensing 

perspective. (Issue Ed. 2). Prentice-Hall Inc. 

[28] Kolecka, N. (2021). Greening trends and their relationship with agricultural land 

abandonment across Poland. Remote Sensing of Environment, 257(January), 

112340. https://doi.org/10.1016/j.rse.2021.112340 

[29] Kruppa, J., Schwarz, A., Arminger, G., & Ziegler, A. (2013). Consumer credit risk: 

Individual probability estimates using machine learning. Expert Systems with 

Applications, 40(13), 5125–5131. https://doi.org/10.1016/j.eswa.2013.03.019 

[30] Kuc, G., & Chormański, J. (2019). Sentinel-2 Imagery for Mapping and Monitoring 

Imperviousness in Urban Areas. The International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-

1/W2(Evaluation and Benchmarking Sensors, Systems and Geospatial Data in 

Photogrammetry and Remote Sensing), 43–47. https://doi.org/10.5194/isprs-

archives-XLII-1-W2-43-2019 

[31] Kuemmerle, T., Hostert, P., Radeloff, V. C., Van Der Linden, S., Perzanowski, K., 

& Kruhlov, I. (2008). Cross-border comparison of post-socialist farmland 

abandonment in the Carpathians. Ecosystems, 11(4), 614–628. 

https://doi.org/10.1007/s10021-008-9146-z 

[32] Lavreniuk, M., Kussul, N., Meretsky, M., Lukin, V., Abramov, S., & Rubel, O. 

(2017). Impact of SAR data filtering on crop classification accuracy. 2017 IEEE 

1st Ukraine Conference on Electrical and Computer Engineering, UKRCON 2017 

- Proceedings, 912–917. https://doi.org/10.1109/UKRCON.2017.8100381 



[D2.7] Report on Augmenting precision 

 
 

[37|39] 

[33] Lewis, S., & Kelly, M. (2014). Mapping the Potential for Biofuel Production on 

Marginal Lands: Differences in Definitions, Data and Models across Scales. 

ISPRS International Journal of Geo-Information, 3(2), 430–459. 

https://doi.org/10.3390/ijgi3020430 

[34] Liu, Y., Li, Y., Li, S., & Motesharrei, S. (2015). Spatial and temporal patterns of 

global NDVI trends: Correlations with climate and human factors. Remote 

Sensing, 7(10), 13233–13250. https://doi.org/10.3390/rs71013233 

[35] Löw, F., Fliemann, E., Abdullaev, I., Conrad, C., & Lamers, J. P. A. (2015). 

Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite 

remote sensing. Applied Geography, 62, 377–390. 

https://doi.org/10.1016/j.apgeog.2015.05.009 

[36] Malinowski, R., Lewiński, S., Rybicki, M., Gromny, E., Jenerowicz, M., Krupiński, 

M., Nowakowski, A., Wojtkowski, C., Krupiński, M., & Krätzschmar, E. (2020). 

Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 

Imagery. Remote Sensing, 12(21), 3523. 

[37] Mitri, G., Nader, M., Abou Dagher, M., & Gebrael, K. (2020). Investigating the 

performance of sentinel-2A and Landsat 8 imagery in mapping shoreline 

changes. Journal of Coastal Conservation, 24(3). 

https://doi.org/10.1007/s11852-020-00758-4 

[38] Nalepa, R. A., & Bauer, D. M. (2012). Marginal lands: the role of remote sensing 

in constructing landscapes for agrofuel development. Journal of Peasant Studies, 

39(2), 403–422. https://doi.org/10.1080/03066150.2012.665890 

[39] Osgouei, P. E., Kaya, S., Sertel, E., & Alganci, U. (2019). Separating Built-Up 

Areas from Bare Land in Mediterranean Cities Using Sentinel-2A Imagery. 

Remote Sensing 2019, Vol. 11, Page 345, 11(3), 345. 

https://doi.org/10.3390/RS11030345 

[40] Oshiro, T. M., Perez, P. S., & Baranauskas, J. A. (2012). How Many Trees in a 

Random Forest? Machine Learning and Data Mining in Pattern Recognition, 

7376 LNAI, 154–168. https://doi.org/10.1007/978-3-642-31537-4_13 

[41] Pal, M. (2007). Random forest classifier for remote sensing classification. 

International Journal of Remote Sensing, 26(1), 217–222. 

https://doi.org/10.1080/01431160412331269698 

[42] Peter, B. G., Messina, J. P., & Snapp, S. S. (2018). A Multiscalar Approach to 

Mapping Marginal Agricultural Land: Smallholder Agriculture in Malawi. Annals 

of the American Association of Geographers, 108(4), 989–1005. 



[D2.7] Report on Augmenting precision 

 
 

[38|39] 

https://doi.org/10.1080/24694452.2017.1403877 

[43] Peterson, U., & Aunap, R. (1998). Changes in agricultural land use in Estonia in 

the 1990s detected with multitemporal Landsat MSS imagery. Landscape and 

Urban Planning, 41(3–4), 193–201. https://doi.org/10.1016/S0169-

2046(98)00058-9 

[44] Rayner, J. N. (1971). Introduction to spectral analysis. 

[45] Sallustio, L., Pettenella, D., Merlini, P., Romano, R., Salvati, L., Marchetti, M., & 

Corona, P. (2018). Assessing the economic marginality of agricultural lands in 

Italy to support land use planning. Land Use Policy, 76, 526–534. 

https://doi.org/10.1016/j.landusepol.2018.02.033 

[46] Sim, J., & Wright, C. C. (2005). The Kappa Statistic in Reliability Studies: Use, 

Interpretation, and Sample Size Requirements. Physical Therapy, 85(3), 257–

268. https://doi.org/10.1093/ptj/85.3.257 

[47] Tucker, C. J. (1979). Red and photographic infrared linear combinations for 

monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. 

https://doi.org/10.1016/0034-4257(79)90013-0 

[48] Van Deventer, A. P., Ward, A. D., Gowda, P. H., & Lyon, J. G. (1997). Using 

thematic mapper data to identify contrasting soil plains and tillage practices. 

Photogrammetric Engineering and Remote Sensing, 63, 87–93. 

[49] Yin, H., Prishchepov, A. V., Kuemmerle, T., Bleyhl, B., Buchner, J., & Radeloff, 

V. C. (2018). Mapping agricultural land abandonment from spatial and temporal 

segmentation of Landsat time series. Remote Sensing of Environment, 

210(January), 12–24. https://doi.org/10.1016/j.rse.2018.02.050 

[50] Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in 

automatically mapping urban areas from TM imagery. International Journal of 

Remote Sensing, 24(3), 583–594. https://doi.org/10.1080/01431160304987 

[51] Zollini, S., Alicandro, M., Cuevas-González, M., Baiocchi, V., Dominici, D., & 

Buscema, P. M. (2019). Shoreline Extraction Based on an Active Connection 

Matrix (ACM) Image Enhancement Strategy. Journal of Marine Science and 

Engineering, 8(1), 9. https://doi.org/10.3390/jmse8010009 

  



[D2.7] Report on Augmenting precision 

 
 

[39|39] 

ANNEX II: TABLE OF FIGURES 

Figure 1. Harmonic model (Clinton, 2017) ................................................................... 16 

Figure 2. Pan-European Basemap training image workflow. Source: personal 

compilation of Georgios Spanos. ................................................................................ 21 

Figure 3. MLs Classification algorithm workflow. Source: personal compilation of 

Georgios Spanos. ....................................................................................................... 23 

Figure 4. Accuracy Assessment methodology workflow. Source: personal compilation of 

Georgios Spanos. ....................................................................................................... 25 

Figure 5. Location of example area ............................................................................. 28 

Figure 6. Output of enhanced classification algorithm ................................................. 28 

Figure 7. Comparison of ML class based on (a) Task 2.3 (black), and (b) Task 2.8 (red) 

and (c) 2.8 overlaid on 2.3 .......................................................................................... 29 

Figure 8. ML class in example area (a) General methodology, (b) Case study 

methodology ............................................................................................................... 32 

 

ANNEX III: LIST OF TABLES 

Table 1. The summary of literature review about marginal lands detection using satellite 

imagery. ...................................................................................................................... 10 

Table 2. Sample points allocation per country ............................................................. 26 

Table 3. ML area comparison for example area .......................................................... 30 

Table 4. Accuracy Assessment comparison table (2.3 vs 2.8) .................................... 30 

Table 5. Accuracy assessment comparison table (2.3 vs 2.8 case study) ................... 32 

 


