



# D2.4 Report on Accuracy assessment



This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 823805

#### Georgios Spanos, Aristotle University of Thessaloniki







#### **Authors**

- Anastasios Stamnas
- Abdulrashid Hassan
- Georgios Spanos
- Zoi Touloudi

#### **Editors**

- Luis A. Ruiz
- Juan Pedro Carbonell-Rivera
- Jesús Torralba Pérez
- Elke Krätzschmar
- Charalampos Georgiadis





#### Contents

- Aim and Objectives
- Background
- Methodology development
- Assessment techniques
- Evaluation Metrics
- Results
- Discussion points
- Land Cover analysis
- Conclusions





## **Aim and Objectives**

- Accuracy assessment of the methodology of Task 2.3
  - Definition of the statistical accuracy assessment methods
  - Development of an accuracy assessment methodology of MLs detection/classification through:
    - Stratified random sampling
    - Area-based assessment





# Background

- Accuracy assessment is critical in spatial investigation projects:
  - Need to self-evaluate and learn from errors
  - Need to quantitatively compare methods and algorithms
- No good-fit for all accuracy assessment, as no single map producing technique exists

Sources: Congalton 2001, Congalton & Green 2019





## Initial approach

- Assessment of the Final ML suitability map
- Stratified random sampling
- Visual interpretation
- Tedious
- Possibility of bias and uncertainty







## Methodology workflow

- Assessment of the ML Hard Thresholds
  map
- Project partners provided reference polygons







# **Assessment techniques**

#### **Point-based assessment**

|         | I         | ИL               | nML       |                  |  |
|---------|-----------|------------------|-----------|------------------|--|
|         | Area [ha] | Allocated Points | Area [ha] | Allocated Points |  |
| Greece  | 7988      | 7988             | 5274      | 5274             |  |
| Spain   | 1649      | 1648             | 2199      | 2199             |  |
| Germany | 352       | 352              | 20,913    | 20,913           |  |
| Poland  | 539       | 539              | 2463      | 2463             |  |
| Merged  | 10,529    | 10,529           | 30,849    | 30,849           |  |

#### **Area-based assessment**

- No sampling all of the reference area is exploited
- Validation polygons superimposed on Classified image
  - Intersection algorithm





## **Evaluation Metrics**

• Overall Accuracy (OA)

$$OA = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FN} + \text{FP}} * 100$$

- User's accuracy (UA) error of commission [%] = 100% User's Accuracy[%]
- Producer's accuracy (PA) error of omission[%] = 100% Producer's Accuracy [%]
- Error rate (ERR) or misclassification rate  $ERR = \frac{FP + FN}{TP + TN + FN + FP}$
- **F1-score**  $F1-score = 2 * \frac{PREC * REC}{PREC + REC}$
- Matthew's correlation coefficient (MCC) MCC =

TP \* TN - FP \* FN

 $\sqrt{(TP + FP) (TP + FN) (TN + FP) (TN + FN)}$ 

• Kappaces: Congeneration accuracy – expAccuracy Banko 1998, Bradley 1997, Sokolova et al., 2006, Matthews, 1975, Jensen, 1996; Sim & Wright, 2005 Conference "Carbon sequestration potential of Marginal Lands in Europe", 13/12/2021





### **Results**

| Metric of<br>accuracy | Greece          |                | Spain           |                | Germany         |                | Poland          |                | Merged          |                |
|-----------------------|-----------------|----------------|-----------------|----------------|-----------------|----------------|-----------------|----------------|-----------------|----------------|
|                       | Point-<br>based | Area-<br>based |
| OA (%)                | 71.52           | 70.75          | 82.87           | 83.42          | 60.61           | 59.79          | 90.97           | 90.56          | 67.98           | 67.73          |
| UA (%)                | 77.73           | 76.86          | 77.47           | 77.98          | 3.62            | 3.53           | 92.41           | 90.74          | 42.69           | 42.40          |
| PA (%)                | 73.89           | 73.58          | 84.66           | 85.45          | 90.06           | 88.60          | 54.17           | 52.79          | 75.36           | 74.87          |
| F1-SCORE              | 75.76           | 75.19          | 80.90           | 81.54          | 6.96            | 6.78           | 68.30           | 66.75          | 54.50           | 54.14          |
| ERR (%)               | 28.48           | 29.25          | 17.13           | 16.58          | 39.84           | 40.21          | 9.03            | 9.44           | 32.02           | 32.27          |
| KAPPA                 | 0.41            | 0.40           | 0.65            | 0.67           | 0.04            | 0.04           | 0.64            | 0.62           | 0.33            | 0.32           |
| MCC                   | 0.41            | 0.40           | 0.66            | 0.67           | 0.13            | 0.13           | 0.67            | 0.65           | 0.36            | 0.35           |





### **Results**

#### **Comparison of predicted and reference ML classes:**

| Area of ML in ha       | Greece | Spain | Germany | Poland | Merged |
|------------------------|--------|-------|---------|--------|--------|
| Predicted (area-based) | 7,646  | 1,807 | 8,820   | 313    | 18,589 |
| Reference              | 7,987  | 1,649 | 351     | 538    | 10,529 |





# **Discussion points**

- Hard Layers and S2GLC not 100% accurate
- Detection methodology based on 2017 validation data on 2021
- Different methods are used by different experts in each country in acquiring data
- Large differences in the amount of validation data areas provided by each country
- Class imbalance





## Land Cover Analysis

- TP ML samples overlaid on the S2GLC map
- Identify which types of land cover are associated with MLs







### Conclusions

- Poland manifested the highest overall accuracy in both assessment techniques followed by Spain, Greece and Germany
- For Greece, Spain and Poland majority of the ML areas were over the Herbaceous LC class
- Germany over the Moors and Heathland, and Natural Material Surfaces land cover classes
- Differences in accuracy measures among countries can be balanced by deriving a standard procedure, and/or
- by field measurements of the test areas.





### References

[1] Banko, G. (1998). A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data and of Methods Including Remote Sensing Data in Forest Inventory. IR-98-081.

[2] Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159. <u>https://doi.org/10.1016/S0031-3203(96)00142-2</u>

[3] Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46.

[4] Congalton, R. G. (2001). Accuracy assessment and validation of remotely sensed and other spatial information. International Journal of Wildland Fire, 10(4), 321. https://doi.org/10.1071/WF01031

[5] Congalton, R. G., & Green, K. (2019). Assessing the accuracy of remotely sensed data: principles and practices. CRC press.

[6] Jensen, J. R. (1996). Introductory digital image processing: a remote sensing perspective. (Issue Ed. 2). Prentice-Hall Inc.

[7] Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 405(2), 442–451. https://doi.org/10.1016/0005-2795(75)90109-9

[8] Sim, J., & Wright, C. C. (2005). The Kappa Statistic in Reliability Studies: Use, Interpretation, and Sample Size Requirements. Physical Therapy, 85(3), 257–268. https://doi.org/10.1093/ptj/85.3.257

[9] Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. AAAI Workshop - Technical Report, WS-06-06, 24–29. https://doi.org/10.1007/11941439\_114





### Thank you for your attention!



This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 823805

#### Georgios Spanos, geospan@gmail.com

