

Existing Models considering local aspects

Presenter: Elena Loukaki (HOMEOTECH)

Secondees: Elena Loukaki, Anna Argyroudi, Lampros Papalampros, Nikos Gounaris (HOMEOTECH)

Introduction and goals

- Vegetation biomass is a large store of carbon that can have a direct influence on climate
- MAIL project focuses on m/sm MLs in order to classify them into carbon sequestration capacity categories
- MLs as potential Carbon Sinks contribute to CO₂ removals and enhance the agroforestry's impact rate in the reduction of GHG.

Mail Main Purpose

- 1. Decrease overall CO₂ emissions
- 2. Increase the CO₂ sequestration at m/sm MLs

Methodologies for quantifying carbon sequestration

Measurements on field

Destructive method

- Trees harvest
- Measure weight before and after oven dried
- Small area/sample size
- Accurate but expensive and time consuming
- Not applicable for degraded forests with threatened species
- Biomass equation for assessing biomass on larger scale

Non-destructive method

- Estimates biomass without felling
- Specific coefficients per species
- Rare and protected species
- Develop an allometric equation to estimate a tree mass
- High accuracy in a small sample area
- High cost
- Requires many human, equipment and time resources

- Periodic, direct measurements of carbon in forestry stock
 - i. Full surveys
 - ii. Plot-based survey
 - iii. Two-stage survey

UK Method

- Sample-based inventories of carbon accounting
 - i. Statistically based survey of a sample of the total area of forest
 - ii. Assessment of the species composition, age structure, productive potential, growing stock etc
 - iii. Analysis of the results for the sample area(s) for estimations

Grant Agreement 823805 MAIL H2020 MSCA RISE 2018

Resource Monitoring based on the EISA

Plot & local-scale research

- Detailed information
- Understanding of carbon-cycling processes
- Improvement of ecosystem models for carbon sequestration and GHG fluxes

Long-term monitoring

 Trends information not observable by other means

Spatially extensive surveys

- Assess variability across ecosystems
- Estimates of population parameters
- Evaluation of variables change due to stressors
- GHG fluxes at sites not directly measured

Remotely sensed data

- Assessment at regional to global scales
- Mapping and tracking changes in in land cover and land use
- Assessing biomass
- Evaluating ecosystem disturbances caused by storms, insects, or fire

Direct carbon flux measurements

- Measurements of net flow of carbon into or out of the forest
- Tower above the canopy
- Carbon flux is measured, for all carbon pools, including deadwood and litter and other fractions that are not measured using stockchange methods
- High accuracy but represents a small area where the flux towers are installed
- High cost due to installation and maintenance of the flux towers

Allometric equations & Predictive models

- Tree biomass and soil carbon content are assessed using models
- Simulation models are used to evaluate the carbon sequestration potential
- Existing data and knowledge to create projections, or scenarios
- Accuracy depending on the availability of data series that are used as input for a specific sample area
- Homogenic units (tree species composition, age classes, tree growth rates, stand management regimes)
- Cost-effective

Use of Remote Sensing and GIS

- Areas difficult to access or inaccessible in continental or global scale
- Realistic & Cost-effective
- Vegetation, land cover, land-use change, forest's carbon stocks
- Long-wavelength radar instrument

- Airborne LiDAR systems and polarimetric SAR interferometry
- Landsat ETM, MODIS, MERIS, SPOT

IPCC Guidelines for carbon stock estimation

Tier	What is the tier about?	Need of input data	Tier assessment profile
Tier 1	A basic method that uses default values by LULUC type and is most suitable for nations with limited inventory and remote-sensing capabilities	 Spatially coarse default data based on globally available data Methods involving several simplifying assumptions Default values of the parameters from the IPCC guidelines 	Simple first order approachLarge uncertainties
Tier 2	Based on inventory and bookkeeping it is used where country-specific conditions and estimates of activity data and emission/removal factors are available	 Country or region specific values for the general defaults More disaggregated activity data 	 A more accurate approach Relatively smaller uncertainties
Tier 3	Based on inventory and process-based models, it includes methods that represent more demanding technical capabilities, accuracy, and data requirements	Detailed modeling and/or inventory measurement systems data at a greater resolution. Heavily depends on remote sensing	 Higher order methods Lower uncertainties than previous methods

Selected method for MaiL

- IPCC method (Tier 1) selected
- Direct methods were excluded due to time-frame and resources conditions
- Detailed in the IPCC Guideline

- Tier 1 input data are easily accessed from already existing European / global datasets
- Cost-effective approach for biomass and carbon mapping over large geographical regions
- Appropriate for continental studies

Knowledge gained through T2.5 was used in T4.2: Quantification of carbon sequestration capacity in MLs

T4.3 Estimation of carbon stock in forest products

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 823805

Elena Loukaki

eloukaki@homeotech.gr

