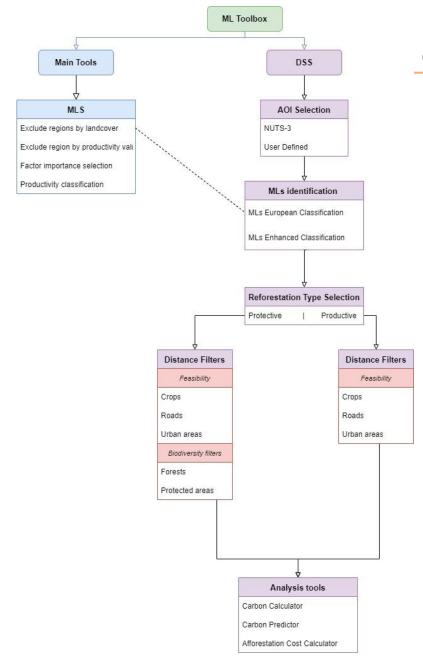


Decision Support System for marginal lands management - General description

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 823805

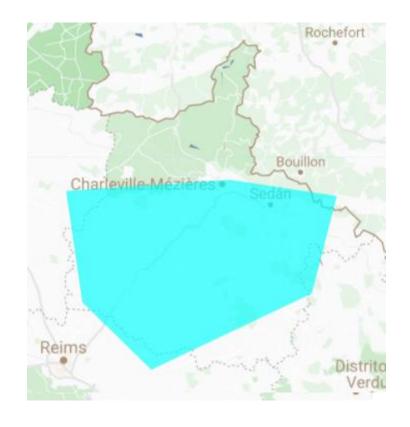
Fernando Bezares Sanfelip, CESEFOR



MAIL toolbox: structure

- MAIL toolbox
 - Main tools
 - Exclude regions by land cover
 - Exclude regions by productivity values
 - Factor importance selection
 - Productivity Classification
 - DSS:
 - Area Selection
 - Identification of MLs
 - Distance Filters
 - Analysis tools

Marginal Lands Conference, 13 December 2021



Define the area of interest:

- NUTS 3: using GAUL level 2
- User defined polygon

DSS: toolbox

DSS: toolbox

- Define the area of interest:
 - NUTS 3: using GAUL level 2
 - User defined polygon

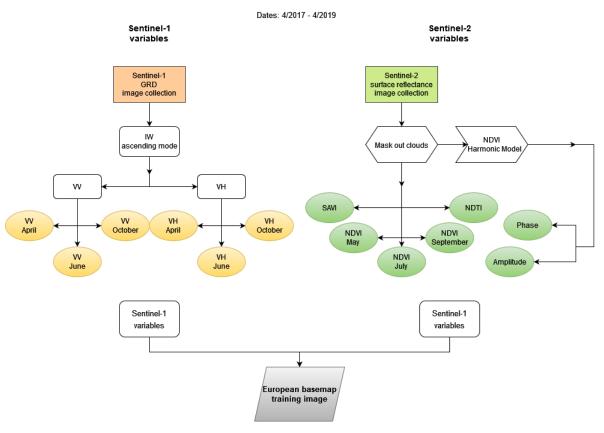
DSS: Identification of MLs

- MLs European Classification
- MLs Enhanced Classification

Exclude regions by landcover Exclude region by productivity value Factor importance selection Productivity classification MLs identification MLs European Classification MLs Enhanced Classification

2. ML Identification Method

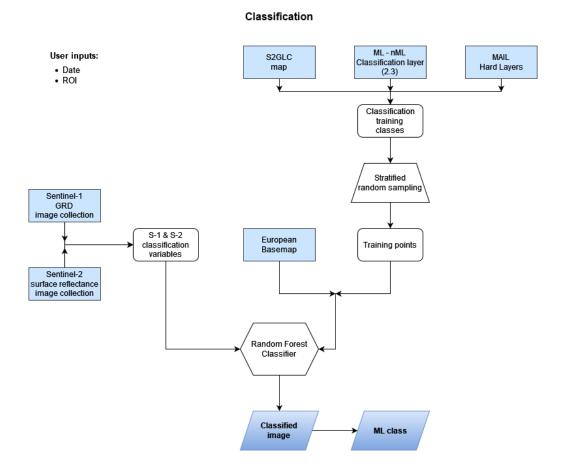
Choose a Marginal Land identification method.


The MLs European Classification uses a general MLs definition for Europe
The Enhanced Classification improves the identification at local scale.

Select MLs Identification Method \$

European Basemap Training Layer

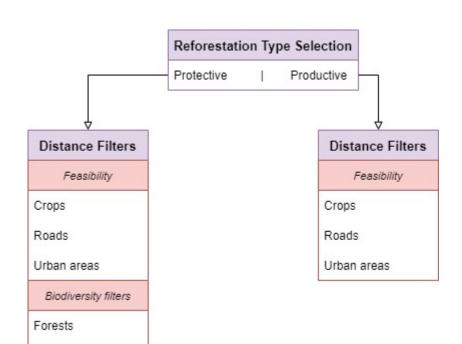
European Basemap Training Layer



Authors: Michał Krupiński and Georgios Spanos

Marginal Lands Conference, 13 December 2021

Classification

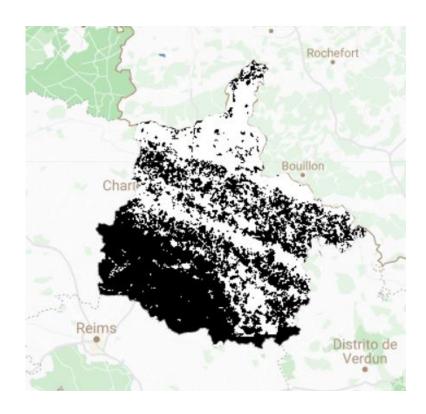

Authors: Michał Krupiński and Georgios Spanos

Marginal Lands Conference, 13 December 2021

Distance Filters

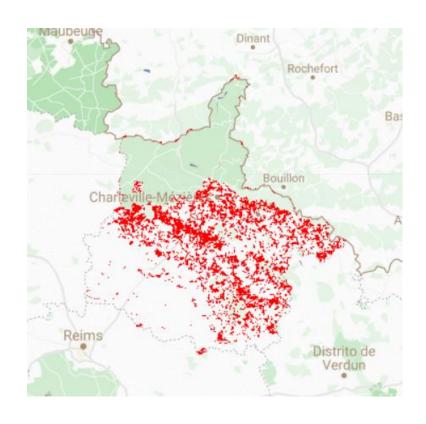
- Two reforestation scenarios
 - Protective:
 - Distance filters applied:
 - Feasibility:
 - Crops
 - Roads
 - Urban Areas
 - Biodiversity:
 - Forests
 - Protected Areas
 - Productive:
 - Distance filters applied:
 - Feasibility:
 - Crops
 - Roads
 - Urban Areas

Protected areas



Distance Filters

3. Type of Reforestation Select your reforestation objective and obtain the most suitable areas. Define the maximun distance to (closer than) or from (further than) a given area. By default it is set to distance to. Max distance 5000 m productive \$ further than Crops maximun distance (m) further than Built-up maximun distance (m) further than Roads maximun distance (m)


Select your reforestation objective and obtain the most suitable areas Define the maximun distance to (closer than) or from (further than) a given area. By default it is set to distance to. Max distance 5000 m		
protective \$		
Forest	maximun distance (m)	further than
rotected Areas	maximun distance (m)	further than
Crops	maximun distance (m)	further than
Built-up	maximun distance (m)	further than
Roads	maximun distance (m)	further than
Apply		

Distance Mask

Distance Filters

Masked MLs Enhanced Classification

Analysis Tools

- Carbon Calculator:
 - Calculates carbon for a given DBH for a selection of species using biomass equations. (Forrester et al. 2017)
- Carbon Predictor:
 - Predicts DBH (Schelhaas et al. 2018)
 - Applies Carbon calculator biomass equations
- Afforestation Cost Calculator:
 - Retrieves the cost of planting one tree based on: slope, distance from cities, soil texture and labour cost.

Analysis Tools

Analysis tools

Carbon Calculator

Carbon Predictor

Afforestation Cost Calculator

Access?

Access?

Google Earth account required

Access?

Free

Open

Google Earth account required

(but it's free too)

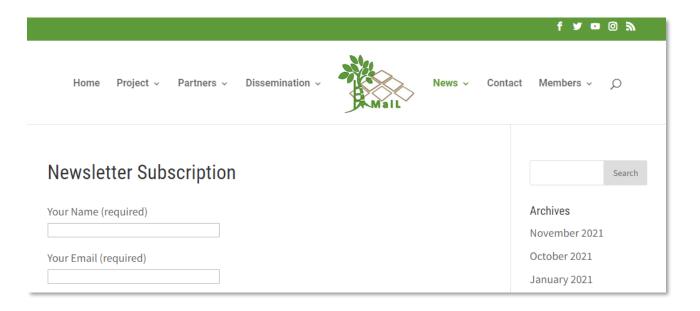
More information ...

More information ...

Dedicated section with tutorials within MaiL MOOC

More information ...

Dedicated section with tutorials within MaiL MOOC


News published on http://marginallands.eu/

Dedicated section with tutorials within MaiL MOOC

News published on http://marginallands.eu/

References

Analysis Tools

- Forrester, D. I., Tachauer, I. H. H., Annighoefer, P., Barbeito, I., Pretzsch, H., Ruiz-Peinado, R., ... & Sileshi, G. W. (2017). Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecology and Management, 396, 160-175.
- Schelhaas, MJ., Hengeveld, G.M., Heidema, N. et al. Species-specific, pan-European diameter increment models based on data of 2.3 million trees. For. Ecosyst. 5, 21 (2018). https://doi.org/10.1186/s40663-018-0133-3

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 823805

Fernando Bezares Sanfelip, fernando.bezares@cesefor.com

