
 

 

 

 

MAIL project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Marie Skłodowska-Curie grant agreement No 823805; [H2020 

MSCA RISE 2018] 

 

 

 

 

 

 

 

 

D2.5 
Report on Estimation of biomass 
volume at low productivity MLs. 

 

MAIL: Identifying Marginal Lands in Europe and 
strengthening their contribution potentialities in a CO 2 
sequestration strategy  

 

 

 

 

 

 

 

 

 

 

 



[D2.5] Report on Estimation of biomass volume at low productivity 
m/ms MLs  

 

[2|86] 

Project title 
Identifying Marginal Lands in Europe and strengthening their 
contribution potentialities in a CO2 sequestration strategy 

Call identifier H2020 MSCA RISE 2018 

Project acronym MAIL 

Starting date 01.01.2019 

End date 31.31.2021 

Funding scheme Marie Skłodowska-Curie 

Contract no. 823805 

 

Deliverable no. D2.5 

Document name MAIL_D2.5.pdf 

Deliverable name 
Report on Estimation of biomass volume at low productivity 
m/ms MLs 

Work Package WP2 

Nature1 R 

Dissemination2 CO 

Editor IABG 

Authors Jesús Torralba, Simonas Garsva and Rewanth Ravindran 

Contributors Luis A. Ruiz and Lindner Martin 

Date 29-10-2020 

 
1 R = Report, P = Prototype, D = Demonstrator, O = Other 
2 PU = Public, PP = Restricted to other programme participants (including the Commission 
Services), RE = Restricted to a group specified by the consortium (including the Commission 
Services), CO = Confidential, only for members of the consortium (including the Commission 
Services). 



[D2.5] Report on Estimation of biomass volume at low productivity 
m/ms MLs  

 

[3|86] 

MAIL CONSORTIUM 

 

Aristotle University of Thessaloniki 
(AUTH) Greece 

 

Industrieanlagen Betriebsgesellschaft 
MBH (IABG) Germany 

 

Gounaris N. – Kontos K. OE 
(HOMEOTECH) Greece 

Centrum Badan Kosmicznych Polskiej 
Akademii Nauk (CBK PAN) Poland  

 

Universitat Politècnica de València 
(UPV) Spain 

 

Fundación Centro De Servicios Y 
Promoción FOrestral Y de su Industria De 

Castilla y León (CESEFOR) Spain 

 

  



[D2.5] Report on Estimation of biomass volume at low productivity 
m/ms MLs  

 

[4|86] 

ABBREVIATIONS 

Term Explanation 

AGB Above-Ground Biomass 

AIC Akaike Information Criterion 

ALS Airbone Laser Scanning 

CHM Canopy Height Model 

CO2 Carbon Dioxide 

CLC Corine Land Cover 

DBH Diameter at Breast Height 

DEM Digital Elevation Model 

DSM Digital Elevation Surface 

ESA European Space Agency 

EU European Union 

GEDI Global Ecosystem Dynamics Investigation 

GHG Greenhouse Gas 

GPS Global Positioning System 

GRD Ground Range Detected 

GSV Growing Stock Volume 

ha Hectares 

HRL High Resolution Layer 

IMU Inertial Measurement Unit 

InSAR Interferometric Synthetic Aperture Radar 

IWCM Interferometric Water Cloud Model 

km Kilometres 

LiDAR Light Detection and Ranging 

m Meters 



[D2.5] Report on Estimation of biomass volume at low productivity 
m/ms MLs  

 

[5|86] 

ML Marginal Lands 

MODIS Moderate Resolution Imaging Spectroradiometer 

N Number of trees 

NASA National Aeronautics and Space Administration 

ºC Degree Celsius 

QMD Quadratic Mean Diameter 

r Plot Radius 

rRMSE Relative Root Mean Square Error 

RADAR Radio Detection and Ranging 

SAR Synthetic Aperture Radar 

SNAP Sentinel Application Platform 

SEE Standard Error of Estimate 

TanDEM - X TerraSAR-X add-on for Digital Elevation Measurement 

TCD Tree Cover Density 

WCM Water Cloud Model 

 

  



[D2.5] Report on Estimation of biomass volume at low productivity 
m/ms MLs  

 

[6|86] 

Contents 
 

MAIL Consortium .......................................................................................................... 3 

Abbreviations ................................................................................................................ 4 

Executive Summary ...................................................................................................... 8 

1. Introduction and goals ............................................................................................ 11 

2. Background ............................................................................................................ 11 

2.1 Biomass .......................................................................................................... 11 

2.2 Remote Sensing and Biomass......................................................................... 12 

2.3 SAR Remote Sensing Biomass Inventory ........................................................ 15 

2.3.1 Backscatter ............................................................................................... 16 

2.3.2 Polarimetry ............................................................................................... 17 

2.3.3 Interferometry ........................................................................................... 18 

2.4 LiDAR Remote Sensing Biomass Inventory ..................................................... 18 

2.4.1 LiDAR technology brief ............................................................................. 18 

2.4.2 LiDAR Biomass models ............................................................................ 21 

3. Pilot Sites and Ground Truth Data .......................................................................... 24 

3.1 Espadán, Castellón, Spain. ............................................................................. 25 

3.2 Nogueruelas, Teruel, Spain. ............................................................................ 26 

3.3 Greece. ........................................................................................................... 27 

3.4 Ground Truth Data........................................................................................... 27 

3.4.1 Spain pilot sites ........................................................................................ 27 

3.4.2 Greece pilot site ........................................................................................ 30 

4. Methods ................................................................................................................. 31 

4.1 Sentinel-1 data-only based method - the WCM ............................................... 31 

4.1.1 Model description...................................................................................... 31 

4.1.2 Results ..................................................................................................... 38 

4.1.3 Discussion ................................................................................................ 45 

4.2 Interferometric Water Cloud Model – Inversion Model ..................................... 49 

4.2.1 Introduction ............................................................................................... 49 

4.2.2 IWCM Theory and Method Description ..................................................... 50 

4.2.3 IWCM parameter Estimation using Inverse Modeling ................................ 52 

4.2.4 Study Site and Data .................................................................................. 53 

4.2.5 Application of IWCM Method .................................................................... 53 

4.2.6 Results and Discussion............................................................................. 56 



[D2.5] Report on Estimation of biomass volume at low productivity 
m/ms MLs  

 

[7|86] 

4.3 LiDAR .............................................................................................................. 60 

4.3.1 ALS Acquisition ........................................................................................ 61 

4.3.2 LiDAR data pre-processing ....................................................................... 62 

4.3.3 Metrics extraction...................................................................................... 63 

4.3.4 Modelling .................................................................................................. 64 

4.3.5 Results and Discursion ............................................................................. 66 

5. Comparison of methods ......................................................................................... 71 

5.1 Summary of Pros and cons of each methodology ............................................ 72 

5.1.1 WCM Method ............................................................................................ 72 

5.1.2 IWCM Method ........................................................................................... 72 

5.1.3 LiDAR ....................................................................................................... 73 

6. Recommendations ................................................................................................. 74 

References ................................................................................................................. 76 

Annex I: Table of figures ............................................................................................. 82 

Annex II: List of Tables ............................................................................................... 85 

 

  



[D2.5] Report on Estimation of biomass volume at low productivity 
m/ms MLs  

 

[8|86] 

EXECUTIVE SUMMARY 

Large-scale estimation of biomass and carbon content of vegetation is not simple. The 

traditional methods for forest biomass estimation, generally manual, are not sufficient to 

cover the need to have a broad and detailed knowledge of the biomass stored in natural 

environments (forests, shrublands, ML with vegetation, etc.). RADAR and LiDAR remote 

sensing sensors have the capacity to record large areas and derive from the data 

obtained, different forest parameters. These sensors can directly measure parameters 

such as height or number of individuals in a given area, but they can also indirectly 

estimate parameters such as wood volume, biomass and carbon content. 

Task 2.6 “Estimation of biomass volume at low productivity m/sm MLs” studies different 

methodologies for biomass estimation on marginal lands using RADAR and LiDAR data. 

To carry out this study we do not have biomass data from marginal lands themselves but 

have worked with field data acquired in forests at the test sites of Espadán (Spain), 

Nogueruelas (Spain) and Thessaloniki (Greece). The RADAR data used are free and 

were provided by the ESA Copernicus Sentinel-1 and the LiDAR data were acquired 

through a private aerial system and have been provided by the UPV partner through the 

[CGL2016-80705-R] project financed by the Spanish Ministry and ERDF (European 

Regional Development Fund). 

The biomass estimation for the test areas has been implemented using 3 different 

approaches: 

i) Water Cloud Method (WCM). This method uses the Sentinel-1 C-band and 

analyzes over a forest area the relationship between backscatter generated at the 

top of the forest canopy and the backscatter generated in the soil gaps. The 

workflow starts with radiometric, and geometric correction and speckle filtering with 

the support of a DEM. Then the non-vegetation areas are masked with the help of 

the CORINE land cover. Areas defined as forest are classified into dense forest 

and soil with the use of the Tree Cover Density (TCD) High Resolution Layer (HRL) 

from Copernicus. In these two areas the parameters of forest backscatter and 

ground backscatter are estimated. Then the β values and the maximum value of 

Growing Stock Volume (GSV) are selected to apply the WCM equation. Finally, 

the WCM values are transformed to Above-Ground Biomass (AGB). To reduce 

noise in backscatter and reduce the error of AGB estimation, different polarizations 
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and the combination of images acquired at different times of the year were 

analyzed.  

ii) Interferometric Water Cloud Model (IWCM). In this method the backscatter is 

identified in a similar way to the WCM method but generalized to include gaps in 

the vegetation cover by the introduction of the area fraction covered by vegetation. 

To perform the interferogram, two images were selected from September 2015, 

which is the date when the data was measured in the ground. The images were 

pre-processed to obtain the “backscatter image” and the “coherence image”. The 

height of the vegetation was obtained by subtracting the Digital Terrain Model 

(DTM) from the Digital Surface Model (DSM) acquired by the LiDAR dataset that 

was used as “phase heights”. Finally, the IWCM model was calculated and the 

obtained values were converted to biomass values. 

I) LiDAR. The methodology used allows to estimate the biomass at plot level from 

aerial LiDAR data. First, the value of the biomass at plot level was calculated from 

the field data. At the same time, a pre-processing of the Airborne Laser Scanning 

(ALS) data was carried out, removing the noise, normalizing the heights, and 

trimming the clouds according to the size and shape of the plots. Afterwards, the 

height and intensity metrics ALS per plot were obtained. The different ALS metrics 

were analyzed using the Akaike information criterion to select the relevant 

predictors for biomass adjustment. With ALS metrics as independent variables and 

ground truth biomass values as dependent variables, multiple linear regression 

models were generated for each study area and species. Finally, the accuracy of 

the different models was evaluated with different statistics by leave-one-out cross-

validation. 

To implement the SAR WCM methodology, Sentinel-1 C-band, CORINE land cover 

layers and Tree Cover Density (TCD) High Resolution Layer (HRL) from Copernicus are 

required, which are free and open access, as well as ESA's SNAP processing software. 

For the IWCM SAR methodology, Sentinel-1 C-band (free and open access), DTM, DSM 

(depending on the resolution are also free at different scales) and biomass field data 

(usually involve an acquisition cost) are required. In addition, the free SNAP software 

and commercial MATLAB software are also required, although it could be programmed 

in other free languages. To implement the LiDAR methodology, field data that generally 

have a cost, airborne LiDAR data that have an acquisition cost or low-density point 

clouds that in some EU countries are free, are required. For processing the LiDAR data, 

LAStools and the Fusion software that is distributed free of charge by the US Forest 
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Service were used, while for the statistical analysis of the data, the free software RStudio 

was used. 

The results with the WCM method had a low precision, generally around 30-80% of 

rRMSE, mainly due to an early signal saturation – short C-band wavelength has limited 

penetration leading to loss of signal sensitivity at higher biomass levels (above 100 

Mg/ha) under non-optimal environmental and meteorological conditions at the time of 

image acquisition. On the other hand, this method is the only one transferable to all of 

Europe, although it is very sensitive to the weather conditions in which the different 

images were taken. The IWCM method improved the precision with respect to the WCM 

method, reaching an rRMSE of 36% - 48.2%% for some stands. This method is more 

complex to implement, and its transferability depends on the availability of field data. The 

LiDAR methodology was the one that obtained the better precision. It also obtained 

biomass estimation equations with an R2
adj of 0.69 to 0.83 depending on the test site and 

the dominant tree species. Regardless of the good results of LiDAR methodology, and 

its evident usefulness in biomass estimation, these results are not transferable to other 

test sites. To be transferable, LiDAR and biomass data should have been available to fit 

the equations to each test site and each set of species. 
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1. INTRODUCTION AND GOALS  

This document describes the methodology and key aspects for the estimation of biomass 

volume at m/ms MLs using RADAR and LiDAR remote sensing technologies. The main 

objective of this task is to show and validate methods to quantify biomass and CO2 in ML 

with the use of SAR and LiDAR sensors in the reference areas provided by the MAIL 

consortium. To achieve this objective, a literature review of the most frequently used 

methodologies with RADAR and LiDAR for biomass estimation has been carried out and 

these methodologies have been implemented in the pilot areas. In this case, the 

methodologies have been implemented on forest areas with marginal zones inserted in 

them, these are the only areas available with field data, LiDAR and SAR data acquired 

on the same dates. 

2. BACKGROUND 

Forests play a key role in the global carbon cycle by capturing 25% of the carbon emitted 

into the atmosphere by fossil fuel consumption (S. Saatchi, 2019). At European level, 

forests are one of the most important renewable resources, and provide a wide range of 

benefits to society. One of the many benefits of the European forests is that they 

constitute important carbon sinks capable of absorbing and storing about 10% of the total 

greenhouse gas (GHG) emissions of the European Union. Considering the importance 

of forests for climate change, the forestry sector, and those areas susceptible to being 

forested such as MLs, play a key role in ensuring that the potential for carbon sinks3 is 

fully exploited. However, these carbon absorption amounts are not sufficient to mitigate 

the CO2 emissions of the EU. So, this is where the marginal lands that can be turned into 

forest can contribute to the absorption of CO2. 

2.1 Biomass 

An extensive literature establishes that through actions such as afforestation, forest 

management and reduction of deforestation, forests are very efficient carbon sinks 

(Favero, Daigneault, & Sohngen, 2020). Forest structure is a direct indicator of how 

carbon is stored in the global ecosystems. This carbon stored in the vegetation has 

 
3 The definition of a carbon sink given by the 1992 Framework Convention on Climate Change 
refers to any process, activity or mechanism that absorbs a greenhouse gas, an aerosol or a 
greenhouse gas precursor from the atmosphere. 
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numerous positive effects on the functioning of the ecosystem (i.e. carbon, nutrients, 

water). Measuring the vegetation carbon in situ is a very complicated task. Generally, 

carbon measurement is based on vegetation biomass, which is a primary variable 

correlated to the quantity of carbon flowing in the carbon cycle (Kaasalainen et al., 2015). 

Biomass involves above-ground biomass (AGB) and below-ground biomass. Above-

ground biomass represents all living biomass above-ground including stems, branches, 

bark, leaves and seeds of trees and shrubs, while below-ground biomass is made up of 

all roots except the smallest roots (FAO, 2004). Biomass can be measured in the field 

using destructive techniques, very accurately, but with a high cost in terms of time and 

finance (Zhang & Ni-meister, 2014). However, these measurements are the tool to 

establish predictive models, to evaluate models made with other techniques and to 

validate the accuracy of estimated biomass values. In situ biomass data are obtained by 

destructive methods applied on an individual tree or on a reference area (plot). This 

method involves harvesting the plants, drying them, and then weighing the biomass. 

Once the biomass values are obtained, the allometric relations between the biomass and 

specific tree attributes are established, essentially using height, Diameter at Breast 

Height (DBH) or forest cover (Montero, Ruiz-Peinado, & Muñoz, 2005; Ruiz-Peinado 

Gertrudix, Montero, & Del Rio, 2012). These tree attributes are generally easy to acquire 

in the field and allow for relatively accurate biomass estimates, and they are typically 

collected on samples plots designed for a specified study or they are compiled in National 

Forest Inventories (Zhang & Ni-meister, 2014). However, these measurements are not 

at forest level and it is difficult to extrapolate the plot estimates to a larger area. In 

addition, from the small area of plots where biomass is estimated, land use activities, 

together with increasing climatic disturbances and human pressure on the environment, 

are changing rapidly the requirements for forest inventories by plots that include more 

plots and more frequent observations of forest ecosystems (S. Saatchi, 2019). 

2.2 Remote Sensing and Biomass 

Remote sensing has been widely used as a strong tool in forest structure analysis and 

biomass estimation because it provides information at local, continental and global 

scales (Zhang & Ni-meister, 2014). A suite of remote sensing sensors provides 

measurements of structural and biophysical characteristics of forests based on the 

interaction of light or microwave energy with forest canopies and woody components (S. 

Saatchi, 2019). Three types of remote sensing data are commonly used: optical images, 

radar images and LiDAR data. 
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Typically, sensors are categorized into passive sensors, which measure the energy 

reflected or emitted from the earth's surface, and active sensors that generate their own 

energy and measure the attributes of the energy returning from the surface. Passive 

sensors measure different wavelength ranges in the optical and microwave spectrum, 

providing two-dimensional information directly related to the biophysical properties and 

health status of vegetation (Shugart, Saatchi, & Hall, 2010). In forestry, the reflectance 

in the optical spectrum is sensitive to the forest structure (position of the trees, tree 

density, crown size, leaf area), texture and shading, attributes closely related to biomass 

estimation (Zhang & Ni-meister, 2014). On the other hand, active sensors are designed 

to operate at a specific wavelength, in particular LiDAR in the visible or near infrared and 

RADAR in microwave long wavelengths (Shugart et al., 2010). In biomass estimation, 

radar images link dielectric and geometric properties of a forest (Le Toan et al., 2011). 

LiDAR is able to characterize the vertical structure of the vegetation and the height of 

the trees which are variables associated to the biomass estimation (Ruiz, Hermosilla, 

Mauro, & Godino, 2014; Ruiz, Recio, Crespo-Peremarch, & Sapena, 2018).  

Over the last 20 years, remote sensing techniques have been studying in detail to 

accurately assess the characteristics of the forest and in particular the study of the 

biomass, e.g. Le Toan et al. (2011); Hermosilla et al. (2014); Zhang y Ni-meister, (2014); 

Kaasalainen et al. (2015); Silva et al. (2017); Zhao et al. (2018) and Saatchi, (2019). In 

this document a brief summary of active remote sensing sensors to characterise forest 

structure and biomass (Figure 1), dividing them into two categories according to the 

measurement capacity of the sensors has been performed. The first type of sensor refers 

to direct observation and measurement as performed by LiDAR. The height 

measurements are the relatively direct from laser altimetry from air or space, as are the 

relatively direct angle and distance measurements made with clinometers from the 

ground. There are different studies where it has been proved that tree height can be 

measured with the same precision, and even better, with LiDAR than with manual 

measurements, as well as measurement errors can be treated in the same way as field 

measurements (Dubayah & Drake, 2000; Wulder, Bater, Coops, Hilker, & White, 2008; 

Wulder et al., 2012). The second category of active sensors would be the RADAR 

images, which provide indirect measurements of forest volume, biomass and height. In 

this case the backscatter measurements of RADAR images have a strong sensitivity to 

forest structure and biomass. The sensitivity of radar images depends on the length of 

the microwaves used, for example, with L-band the sensitivity is reduced when the 

biomass increases in the range of 100 to 150 MG/ha and with P-band the sensitivity is 
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lost when the biomass per hectare is between 200 - 300 Mg (Le Toan et al., 2011; S. 

Saatchi, 2019). If interferometric radar techniques are combined, the sensitivity of the 

biomass estimate can be increased, as well as the gaps in the crown cover, the structure 

and the spatial heterogeneity of the forest can be determined with greater precision. 

 

Figure 1. Radar and LiDAR can capture the horizontal and vertical structure of forest 

ecosystems. Image from Saatchi (2019). 

Remote sensing techniques with LiDAR and RADAR are now recognised as the best 

methods for quantifying and monitoring changes in forest AGB worldwide. Proof of this 

are the numerous missions of space agencies such as ESA and NASA, which are 

investing a large amount of their efforts in launching LiDAR (e.g. GEDI) or RADAR 

(Sentinel-1 and Sentinel-2) sensors for global biomass monitoring. The following 

subchapters provide a more detailed description of RADAR and LiDAR. 
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2.3 SAR Remote Sensing Biomass Inventory 

Forest above ground biomass (AGB) is mainly estimated by either traditional field 

measurements or by remote sensing methods (Maurizio Santoro & Cartus, 2018). 

Ground based field measurements provide the most comprehensive and detailed way of 

calculating biomass. However, the 

availability of measurements is limited 

in extent. Far more extensive data can 

be obtained from remote sensing 

methods, such as from multispectral 

and SAR satellites, over regional or 

continental scales compared to field 

plots and providing a more spatially 

comprehensive measure of forest 

biomass related parameters. However, 

direct estimation of biomass is not 

given by these satellite measurements 

(Jan I.H. Askne, Soja, & Ulander, 

2017), only measurements of some 

forest or vegetation related signals that 

can then be used in models to convert 

to biomass estimation e.g. AGB. 

SAR is a type of radar measurements 

made by satellites in the microwave 

region of the spectrum, at multiple 

frequency bands. As an active type of 

remote sensing, SAR has the ability to 

penetrate the canopy and interact with 

the main biomass components, i.e., the 

tree trunks and branches. SAR 

backscattering intensity increases as 

forest biomass increases (S. Saatchi, 

2019). 

SAR has different sensitivity to forest 

biomass according to its wavelength. 

Figure 2. Sensitivity of different SAR 

wavelengths in the measurement of forest 

structure and the penetration of the wave 

through the canopy. Image from Saatchi 

(2019). 
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As the wavelength increases, the scattering saturation value increases, and the 

correlation between the backscatter and biomass also increases; thus, long wavelength 

(or lower frequency) bands are more suitable for biomass estimation. Backscatter at low 

frequencies is sensitive to the major AGB components, i.e. stems and large branches, 

which is not the case for high radar frequencies (typically, C- and X-band). However, the 

latter can serve as a complement, in particular for less dense forests, since the 

backscattering relationship to AGB at low frequencies is complex and is also affected by 

ground and soil properties (Jan I.H. Askne et al., 2017). 

However, radar sensitivity to AGB values changes depending on the wavelength and 

geometry of the radar measurements and is influenced by surface topography, structure 

of vegetation, and environmental conditions such as soil moisture and vegetation 

phenology or moisture (S. S. Saatchi, Le Vine, & Lang, 1994). All algorithms or models 

used to estimate AGB from SAR measurements must account for all variables that 

impact SAR measurements. For this, different information types from SAR 

measurements can be used: Backscatter, Polarimetry, and Interferometry. 

2.3.1 Backscatter 

The impact of vegetation structure and biomass on SAR data can be investigated by 

modeling the dominant scattering mechanisms controlling the SAR measurements. A 

variety of approaches exist for modelling vegetation media, including the characterization 

of forest vegetation structure, known as scatterers, or scattering components such as 

stems, branches, and leaves (S. Saatchi, 2019). 

SAR backscatter sensitivity to AGB at any frequency depends on 

a) Measurement geometry (such as incidence angle and location and size of the 

image pixels with respect to the size and the orientation of ground plots). 

b) Forest structural parameters (such as the size (volume) and density of trees 

(number per resolution cell), orientation of forest components (leaves, branches, 

stems), underlying surface conditions (moisture, roughness, and slope)). 

c) The dielectric constant that in turn depends on the vegetation water content or 

specific gravity (i.e., the wood density).  
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2.3.2 Polarimetry 

The backscattering coefficient measurement by SAR systems can be expressed as the 

combination of three scattering components volume (vol) scattering, volume and surface 

interaction (vol-surf), and surface scattering (surf) as shown in the following equation: 

Equation 2-1  𝝈𝒑𝒒
𝟎 = 𝝈𝒑𝒒−𝒗𝒐𝒍

𝟎 + 𝝈𝒑𝒒−𝒗𝒐𝒍−𝒔𝒖𝒓𝒇
𝟎 + 𝝈𝒑𝒒−𝒔𝒖𝒓𝒇

𝟎
 

where pq could be HH, HV, VH or VV polarizations (S. Saatchi, 2019). 

Polarization is therefore the key characteristic of radar signals propagating into tree 

canopies or vegetation volume and scatter from individual vegetation components that 

collectively contribute to the backscatter energy measured by the radar receiver system. 

Polarization as the orientation of radar wave vectors (at H, V, or any other polarization) 

interact with vegetation components and backscatter according to the size and 

orientation of scatterers. For example, a standing live tree with near-vertical orientation 

depolarizes the incoming waves with different strengths than branches or leaves. Using 

radars that provide measurements in different polarizations allows separate vegetation 

with different structures to be reflected in the average size and orientation of different 

components (S. Saatchi, 2019). 

 

Figure 3. Dominant scattering mechanisms of L-band SAR measurements in a forest area 

contributing to polarimetric backscatter observations. Image from Saatchi (2019). 
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2.3.3 Interferometry 

SAR Interferometry (InSAR) can be created from the phase information from two 

subsequent observations by SAR satellites. InSAR seems particularly useful for AGB 

estimation, for instance where InSAR heights are used in combination with terrain 

information (DTM) to estimate forest canopy height and, subsequently, AGB (Ulander, 

Hagberg, & Askne, 1994). 

The InSAR height of short wavelengths is often assumed as an approximation of canopy 

surface height, although a substantial penetration is observed depending on the 

frequency. Hence, for a precise estimation of the true canopy height, penetration effects 

need to be corrected (Jan I.H. Askne et al., 2017). Different canopy (e.g., forest structure, 

moisture, etc.) and acquisition (e.g. incidence angle) parameters affect the penetration, 

which can differ by a few meters. Consequently, canopy heights estimated from InSAR 

heights can have substantial bias, and the estimates derived from the same sensor but 

under different conditions cannot be compared. Therefore, penetration effects must be 

removed in order to compute consistent and unbiased height estimates that can 

subsequently be used to estimate AGB and allow a robust estimation of changes in 

canopy height and AGB. This is done by using physical models for different forest types 

to estimate the penetration depth and make corrections. In particular, TanDEM-X satellite 

data is mostly considered suitable for this method (Jan I.H. Askne et al., 2017). 

Additionally, coherence data from the InSAR is also used in allometric equations and 

other biomass estimation methods. The relationship between coherence and biomass 

has been described by statistical, empirical, and physically based models, some of which 

will be explored in the later sections. 

2.4 LiDAR Remote Sensing Biomass Inventory 

2.4.1 LiDAR technology brief 

ALS (Airborne Laser Scanning) or aerial LiDAR is an active remote sensing sensor that 

measures the distance to an object using the time-of-flight measurement principle. 

LiDAR sensors emit a laser pulse and record the time it needs for the energy pulse to 

impact the object and return to the instrument. The time measurement is then converted 

into a distance based on the following equation: 
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Equation 2-2  𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 (𝒎) =  
𝑺𝒑𝒆𝒆𝒅 𝒐𝒇 𝑳𝒊𝒈𝒉𝒕 ∙ 𝒕𝒊𝒎𝒆 𝒕𝒐 𝒇𝒍𝒊𝒈𝒉𝒕

𝟐
 

The x,y,z position of the object is defined by the known position of the sensor and the 

precise orientation of the range of measurement between the sensor and the object that 

intercepts it. Regardless of which platform is used to acquire ALS data, the principles of 

measurement are identical. The most commonly used platforms in the acquisition of ALS 

data for forest inventories are fixed wing aircraft or helicopters (Figure 4), although 

recently the GEDI sensor was launched into orbit with the purpose of studying the 

evolution of forests, among other things. 

 

ALS sensors directly measure the vertical distribution of the forest canopy components 

as well as the ground topography, resulting in an accurate estimation of the vegetation 

height and ground elevation. There are two types of ALS sensors working in near-

infrared, discrete return, and full-waveform. Full-waveform ALS systems register the 

reflected (backscattered) energy from each laser pulse as a single or continuous signal 

(Crespo-Peremarch, Ruiz, Balaguer-Beser, & Estornell, 2018). Discrete ALS converts 

waveform data into spatially and temporally referenced targets. In this work we will focus 

on the discrete ALS since it is the available ALS in the pilot areas. A discrete ALS return 

system records up to 5 returns for each laser pulse it emits. A simple case is when a 

laser pulse intercepts an object which cannot penetrate such as a very dense forest 

canopy or an asphalt road, and results in only a return of energy to the instrument. On 

the opposite, when the pulse intercepts an object that it can penetrate, such as a not 

Figure 4. ALS system 

package. The instruments 

included are a laser ranging 

unit; an opto-mechanical 

scanner; control, monitoring, 

and recording units; a 

kinematic global positioning 

system (GPS) receiver; and an 

inertial measurement unit 

(IMU) (Wehr & Lohr, 1999). 

Image from White et al. (2013). 
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excessively dense forest canopy, a first return will occur with part of the energy and the 

other part of the energy will continue through the canopy and intercept stems, branches, 

and leaves until reaching the ground (White et al., 2013). This sequence of iterations 

gives multiple returns for a single laser pulse and produces very useful information about 

the vertical structure of the forest. Typically, the first returns correspond to the tree cover 

while the last returns correspond to the ground or objects close to the ground. The 

intermediate returns would refer to the different parts of the tree depending on the 

species, height, and physiology condition. When the vegetation is dense, the trunks, 

branches and leaves tend to cause a multiple dispersion of the emitted laser energy so 

that less returns are generated from the ground, making it more difficult to generate an 

accurate DEM. As the density of the vegetation increases, the depth of the canopy and 

the structural complexity of the forest increase, fewer pulses reach the ground and the 

DEM accuracy decreases. 

The first step of the ALS data post processing consists of generating a single file called 

“point cloud” where each return has a precise, georeferenced and three-dimensional 

(x,y,z) location as a result of gathering the data acquired by ALS sensor, the kinematic 

global positioning system (GPS) and the inertial measurement unit (IMU) (Figure 4). 

Each of the returns depending on the material against which it impacts, will return to the 

sensor with a certain energy, called intensity, which is also recorded individually for each 

return. In addition to the x, y, z position of each return, the intensity will allow to 

distinguish between the different components of the trees at the same height. 

The point cloud is then processed to first identify the ground points and the no-ground 

points. The ground points generate a precise DTM (representing the height of the ground 

in relation to some reference) and the no-ground points corresponding to the first returns 

generate a DSM (representing the heights of the objects in relation to the ground 

surface). Once both are obtained, the difference between the DTM and DSM values in 

each cell allows the generation of the digital model of surfaces normalized with respect 

to the terrain (CHM), also called canopy height model in forestry applications. 

These three products derived from the point cloud can be used as inputs in the pre-

processing of images acquired with other sensors such as RADAR images. In the same 

way, DEM is used to normalize the ALS point cloud at heights above ground. 
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2.4.2 LiDAR Biomass models  

Like most forest inventory 

techniques, ALS measurements can 

be utilized for mapping and 

inventory of forest structures. In 

general, in most forestry 

applications some measurement of 

height, height variability or crown 

cover will be required (Figure 5). 

Numerous height and density 

measurements of the forest can be 

generated from the ALS data due to 

the strong relationship between the 

ALS height measurements and the 

forest parameters. In the same way 

that AGB is estimated on the ground, 

the allometric models derived with 

ALS can vary from one place to 

another, capturing the differences in 

tree growth, diameters, and heights 

in the whole forest. Some allometric 

models for estimating the AGB using 

ALS metrics show significant 

variations for the same forest. This 

uncertainty in the calculation of the 

AGB for larger areas can be reduced 

by using multiple height metrics. 

However, yet there is no universal 

model for converting ALS height 

measurements into full-scale AGB. 

Regardless of the type of LiDAR 

system used, the estimation of 

biomass is generally made based on 

statistical models that relate the 

AGB to the metrics derived from the ALS system. These assessments are made at 

Figure 5. ALS point cloud of plot 15 in the 

Nogueruelas study area in Spain. a) General 

view of the point cloud, b) zenith view where 

the canopy cover can be observed, and c), 

vertical profile of the forest structure of the 

plot. 

a) 

b) 

c) 
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different scales, from the estimation at the level of individual trees to the scales of plots 

and stands. At plot level, the biomass measured on each tree is aggregated into a single 

value per plot, thus obtaining the reference biomass value for each plot (independent 

term of the equation). On the other hand, height and intensity metrics derived from ALS 

data have been prepared. Three main groups of characteristics can be distinguished 

(Ruiz et al., 2011; Ruiz, 2020): 

a. Those extracted directly from the point cloud of each plot, which can be either: 

a.1 Statistical variables of the distribution in height of the points: as the mean, 

standard deviation, maximum, skewness and kurtosis of each plot from the 

normalized point cloud. These characteristics are complemented by the values 

of the height percentiles. The statistical variables of the height distribution of the 

LiDAR points provide information about the internal structure of the vegetation. 

a.2 Variables derived from the density profiles: From the point cloud, density 

profiles can also be generated, i.e. height histograms of the set of points within 

each plot. 

b. Variables extracted from the standardized surface model (CHM): The calculated 

characteristics of the CHM provide information about the maximum height values in 

each cell or pixel and their spatial distribution within the plot. 

c. The variables derived from the LiDAR intensity data: In addition to the x, y, z 

coordinates, each LiDAR return contains information about the intensity of the 

radiation reflected at that point, that is, spectral information corresponding to the 

wavelength of the system (NIR). Similar to the height statistical variables, statistical 

values can be obtained from the distribution of intensities (mean, standard deviation, 

percentiles, skewness, etc.). In general, the addition of return intensity values to 

regression models provides a better estimation of biomass than height metrics 

alone. 

ALS metrics can be obtained with different software, for example with the FUSION 

cloudmetrics command (McGaughey, 2016). This command produces more than 90 

unique metrics from the heights and intensities measured in the ALS point cloud.  

Models can be developed for species or species groups (Domingo, Lamelas, 

Montealegre, García-Martín, & de la Riva, 2018; Ruiz et al., 2014) or, can be generalized 

to forest types (Ruiz et al., 2018; Zhao et al., 2018). Different approaches can also be 
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used to build the prediction models, but the most common way to do this is either with 

parametric methods or with non-parametric methods. Models generated with parametric 

approaches are characterized by having a finite number of parameters and by making 

assumptions about the relationship between response and predicted variables (White et 

al., 2013). This parametric regression approach has been widely employed in the 

construction of predictive models of forest inventory attributes. On the other hand, the 

most common non-parametric approach applied to forest inventories with ALS is 

Random Forests. This method consists of a decision tree approach based on successive 

regressions (Breiman, 2001). Both approaches have advantages and disadvantages as 

shown in Table 1, however, the selection of the best method for a given area depends 

to some extent on the complexity of the forests in the area of interest and the statistical 

knowledge available for modelling. Finally, the predictions of parametric and non-

parametric models should be limited to the range of observed data used to calibrate the 

model. Both parametric and non-parametric approaches require representative data 

from the field for the development of a robust model. A Random Forest model cannot 

extrapolate the predictions, so it requires that the ground samples be distributed evenly 

in the X and Y space. 

 Parametric Regression Random Forests 

A
d

v
a

n
ta

g
e

s
 

-Easy to understand. 

- The sample size can be determined 

for certain accuracy and precision 

requirements. 

- The model is an equation that clearly 

quantifies the relationship between 

the predictor and the predicted 

variable. 

- Category variables can be used as 

predictors and can also be predicted. 

- Faster development and 

implementation than parametric 

methods 

- It does not require individual models 

to be developed based on strata, as 

long as the calibration data represent 

the different strata involved 

- To implement stratum-based models 

does not require a pre-existing 

polygon-based inventory  
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 Parametric Regression Random Forests 
D
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- The interpretation and application of 

the regression can be complicated by 

the transformation of ground 

measurements or ALS metrics that 

may be necessary to meet the 

assumptions of regression-based 

approaches. 

- More time and statistical expertise 

are necessary to create the models 

- In order to make models of different 

forest strata it is necessary to have an 

inventory layer where the different 

forest types are stratified 

- “Prediction errors will occur within 

polygons when individual grid cells do 

not match the overall strata 

assignment” 

- The development of the models is a 

black box 

- No equation output analogous to the 

parametric regression 

- As this approach does not 

extrapolate as a regression it is more 

difficult to ensure that the full range of 

conditions is sampled 

Table 1. Advantages and disadvantages regarding parametric regression and random 

forest modelling approaches in the context of calculating forest variables with ALS. 

Adapted from White et al. (2013) 

In this task it was decided to work with parametric models and more specifically with 

multiple linear regressions due to the characteristics of the pilot sites used. 

3. PILOT SITES AND GROUND TRUTH DATA 

The selection of data for this task has been conditional on the availability of data by the 

consortium partners. For the estimation of biomass with RADAR and LiDAR it is 

necessary to have biomass data derived from allometric equations using forest 

parameters with DBH or tree height. To work with LiDAR, data is only available in the 

pilot areas proposed in Spain, and from those areas only two: Espadán and 

Nogueruelas. These areas are the only ones that have field and LiDAR data acquired 

simultaneously. To carry out the work with RADAR, in addition to the Spanish pilot areas, 

an area in Greece has been added in which biomass data is available. The following is 

a description of each of the pilot areas and the ground truth data acquired. 
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3.1 Espadán, Castellón, Spain. 

The study area covers 3,741.5 ha and is located in the Natural Park of Sierra de 

Espadán, in the eastern Spain province of Castellón (Figure 6). “This natural park is a 

Mediterranean forest with soft and rounded hills, presence of abandoned farming with 

artificial terraces, and mountain peaks up to 1,100 meters of altitude. The European 

Environment Agency report from 2016 (Bastrup-Birk, Reker, & Zal, 2016) classified this 

area as a semi-natural forest with a natural function, composition and structure, but 

modified by human activities throughout history. Forest type and conditions, and species 

composition have been influenced by human needs and changes in land use, as well as 

reforestation of single species policies from the last century” (Torralba, Crespo-

Peremarch, & Ruiz, 2018). 

This area displays a heterogeneous landscape dominated by pure and mixed native 

coniferous and deciduous forests. “The most dominant species in the area is Pinus 

halepensis Mill., which mainly forms pure stands with different even aged and densities. 

Density of P. halepensis stands ranges from overstocked stands with small sapling 

(10,000 to 45,000 trees/ha) to poorly and medium stocked stands with young and high 

forest (300 to 2,500 trees/ha). P. pinaster Aiton is the second most represented species 

in the area, forming pure stands with densities ranging from 800 to 1,250 trees/ha, and 

mixed stands with Quercus suber L. as codominant species at the upper strata, ranging 

from 500 to 1,200 trees/ha. Quercus ilex L. shows up in punctual places forming pure 

stands and sometimes mixed with other species such as pines or oaks. In some areas, 

mixed stands are observed, where P. pinaster dominates the upper strata, while Q. suber 

and Q. ilex, and Juniperus thurifera L. are codominant species with densities between 

500 and 800 trees/ha” (Torralba et al., 2018). 

“Understory vegetation presence and density are very heterogeneous in this ecosystem 

and depend on the tree composition. Forest stands dominated by P. halepensis have 

taller and denser understory vegetation than those dominated by P. pinaster and Q. 

suber. The most common genera of the understory species are Erica, Genista, 

Rhamnus, Pistacia, Juniperus, Rosmarinus, Quercus, Phillyrea, Daphne and Thymus” 

(Torralba et al., 2018). 
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Figure 6. Espadán (Castellón, Spain) pilot site. 

3.2 Nogueruelas, Teruel, Spain. 

The study area covers 1,900.6 ha and is located north of the municipality of Nogueruelas 

(Teruel) about 65 km from the city of Teruel (Figure 7). This is an eminently forested area 

located in the heart of Sierra de Gúdar. The altitude of the study area ranges between 

600 and 1,800 meters above sea level. The slopes in the study area are gentler than in 

the surrounding environment due to the fact that the mountain is located in areas of high 

plateaus, with the appearance of gentle slopes. The climate is strongly conditioned by 

the relief of the area. The precipitations are scarce, oscillating between the 500 and 

something more than 700 mm annual in the summits, many falls in the form of copious 

summer storms and another part in the form of snow. In general, average temperatures 

are around 7-9 °C, with short summers and long, harsh and very dry winters. 

This area displays a homogeneous landscape dominated by pure coniferous forests 

where the dominant species is P. sylvestris L. (Scots pine). P. sylvestris forms pure 

stands with different even aged and densities ranging from 250 to 1,750 trees/ha, 

sometimes mixed with other species such as P. nigra Aiton. Under the tree canopies, 

understory vegetation is sparse, but in areas which are open, a dense shrub of Juniperus 

sabina L. (Savin juniper) and Juniperus communis L. (Juniper) appear. 
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Figure 7. Nogueruelas (Teruel, Spain) pilot site. 

3.3 Greece. 

The testing site of Thessaloniki covers a total area of 96.63 Km2 and is located nearly 15 

km east of the city of Thessaloniki. The altitude varies significantly from 70 m (the 

relatively flat lowland area in the south east which includes cultivated areas) to 1,100 m 

(the mountainous area in the north west which includes low vegetation areas and natural 

material surfaces) above sea level. The area is mainly characterized by heathland, 

forest, and cultivated areas.  

This study area is divided into a natural forest zone and a reforested forest zone. The 

natural forest zone is dominated by evergreen broadleaf and in the reforested zone the 

main species are Pinus brutia and P. halepensis. 

3.4 Ground Truth Data 

3.4.1 Spain pilot sites 

In the Espadán area, 80 circular plots distributed throughout the study area were 

collected in September 2015 (r = 15 m, a = 706 m2). On each plot the following attributes 

were measured: Diameter at breast height (DBH) from trees with a value above 5 cm, 
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height and canopy base height from the seven dominant trees in each plot, tree species, 

and percentage of understory vegetation cover. In the other hand, in Nogueruelas were 

collected 47 circular plots (r = 14.1 m, a = 625 m2) distributed throughout the study area 

in October and November 2014. Data collected from each plot included DBH from trees 

with a value above 5 cm, height from the two dominant trees in each plot, height from 

five trees representing the average height of the plot, and percentage of understory 

vegetation cover. 

Table 2 shows summary statistics (number of trees, mean, standard deviation, min, and 

max) of the metric sample plot parameters for both areas.  

 Espadán Nogueruelas 

Of sample Plots 80 47 

Plots radio (m) 15 – 3.5 14.1 

DBH range (cm) 5.0 – 82.0 7.5 – 49.5 

 Mean SD Min Max Mean SD Min Max 

N/Plot 

(trees/plot) 
68 51 2 380 49 21 16 107 

N/ha (trees/ha) 3,798 9,093 28 43,914 776 340 256 1,713 

QMD (cm) 19.1 6.9 5.2 29.7 20.2 4.1 29.7 12.0 

Height (m) 12.1 4.7 1.5 25.5 11.7 2.5 18.6 7.6 

Biomass 

(tons/Plot) 
5.81 4.25 0.02 19.40 6.04 2.62 0.75 11.23 

CO2 (tons/Plot) 10.66 7.84 0.05 36.38 11.29 4.90 1.04 20.98 

Table 2.Summary statistics of sample plots. N/Plot, number of trees per plot; N/ha, 

number of trees per hectare; QMD, quadratic mean diameter; Height, height from the 

dominant trees in each plot; Biomass, tons of biomass per plot; CO2 tons of carbon 

dioxide accumulated per plot. 

The equations of Montero et al. (2005) were used for the estimation of the aerial biomass 

for each plot. To apply these equations only the species and the DBH need to be defined. 

The general equation planted by Montero et al. (2005) to calculate the dry biomass in kg 

is: 

Equation 3-1    𝑩𝒊𝒐𝒎𝒂𝒔𝒔 =  𝒆
𝑺𝑬𝑬𝟐

𝟐  ∙ 𝒆𝒂 ∙ 𝑫𝑩𝑯𝒃 

where SEE is standard error of estimation for each species, a and b are parameters 

obtained from Table 2 of Montero et al. (2005) for each species. 



[D2.5] Report on Estimation of biomass volume at low productivity 
m/ms MLs  

 

[29|86] 

From the quantification of the biomass for the tree set, the carbon dioxide stored in each 

plot was calculated. For this purpose, it is necessary to know the percentage of carbon 

in the dry matter, which is defined for Mediterranean species in the Iberian Peninsula in 

Montero et al. (2005). For example, for P. halepensis the carbon content of the dry matter 

is 49.9%, for P. pinaster is 51.1%, P.sylvestris and P.nigra contain both 50.9%, while for 

Q.ilex is 47.5% and for Q.suber 47.2%. By means of the ratio among the weight of the 

CO2 molecule and the weight of the C atom that composes it, we obtain the ratio that will 

be used to go from kg of C to kg of CO2 equivalent (44/12 = 3.67). Thus, multiplying the 

modular values of biomass by the carbon content and by 3.67 we obtain the modular 

values of CO2 for each tree according to the species. Table 3 shows the percentage by 

weight of carbon contained in the dry matter applied to each species proposed by 

Montero et al. (2005). 

Specie % carbon Specie % carbon 

Abies alba Mill. 50.6 Pinus halepensis Mill.  49.9 

Abies pinsapo Boiss.  50.0 Pinus nigra Arn.  50.9 

Alnus glutinosa L. 50.0 Pinus pinaster Ait.  51.1 

Betula spp. 48.5 Pinus pinea L. 50.8 

Castanea sativa Mill.  48.4 Pinus radiata D. Don  49.7 

Ceratonia siliqua L. 50.0 Pinus sylvestris L. 50.9 

Erica arborea L.  50.0 Pinus uncinata Mill. 50.9 

Eucalyptus spp. 47.5 
Populus x euramericana 

(Dode) Guinier  
48.3 

Fagus sylvatica L.  48.6 
Quercus canariensis 

Willd. 
48.6 

Fraxinus spp. 47.8 Quercus faginea Lamk.  48.0 

Ilex canariensis Poir. 50.0 Quercus ilex L. 47.5 

Juniperus oxycedrus L. / J. 

communis L.  
50.0 Quercus pyrenaica Willd. 47.5 

Juniperus phoenicea L./ J. sabina L.  50.0 
Quercus robur L./Q. 

petraea Liebl.  
48.4 

Juniperus thurifera L. 47.5 Quercus suber L.  47.2 

Laurus azorica (Seub.) Franco  50.0 Other coniferous 50.0 

Myrica faya Ait. 50.0 Other broadleaved 50.0 

Olea europaea var. sylvestris Brot.  47.3 Other laurel forest 50.0 

Pinus canariensis Sweet ex Spreng. 50.0   

Table 3. Percentage by weight of carbon contained in the dry matter applied to each 

species. Adapted from Montero et al. (2005). 

Due to the great variability of forest structures and densities in the plots in the Espadán 

study area, it was decided to stratify the plots according to the criteria defined by Torralba 
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et al., (2018). This criterion is based mainly on tree density and basal area resulting in a 

categorization of the plots in pure and mixed. Table 4 shows the two groups of plots for 

which the biomass estimation models have been constructed. A group defined by the 

pure plots of P. halepensis, without those plots with a density of more than 10,000 trees 

per hectare, and another group of pure and mixed plots where the dominant species are 

P. pinaster and Q. suber. The 3 pure Q. ilex plots have been discarded due to not having 

a representative sample of plots to elaborate the models. In the Nogueruelas study area 

it is not necessary to stratify by type of structure since the set of plots maintain similar 

forest attributes. 

Espadán 

ID Species Type 
No 

Plots 
Plots 

T1 P.halepensis Pure 42 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 
15, 16, 17, 18, 19, 30, 33, 34, 45, 46, 
47, 48, 49, 50, 56, 58, 59, 62, 63, 64, 

65, 69, 70, 71, 72, 74, 75, 77, 80 

T2 
P. halepensis 
regenerated 

(>10.000 trees/ha) 
Pure 9 51, 52, 54, 55, 57, 60, 66, 67, 68 

T3 
P. pinaster and 

Q.suber 
Mixed 25 

11, 20, 21, 22, 23, 24, 25, 26, 27, 28, 
29, 31, 32, 35, 36, 37, 38, 39, 40, 41, 

42, 43, 44, 61, 76 

T4 Q.Ilex Pure 3 73, 78, 79 

Table 4. Clusters of points according to species composition and tree density. 

3.4.2 Greece pilot site 

The Thessaloniki field data was acquired in July 2007. A total of 42 plots were distributed, 

17 in the natural forest areas and 25 in the afforested forest areas. In the plots the 

species were identified, the height, DBH and age of each tree were measured. The main 

characteristics of the forest in the area were collected in Table 5. 
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 Natural Forest Afforestation 

Of sample Plots 17 25 

DBH range (cm) 3.0 – 7.1 3.7 – 8.4 

 Mean SD Min Max Mean SD Min Max 

N/Plot 

(trees/plot) 
- - - - 1,225 520 350 2,550 

Height (m) 2.5 0.5 1.8 4.0 6.2 1.5 3.7 8.4 

Age (years) 8 4 5 20 12 2 8 18 

Volume (m3) 15.3 8.2 5.6 31.4 27.3 21.2 3.7 89.3 

Annual increase 

(cm) 
0.8 0.4 0.5 1.9 2.0 0.8 0.4 3.8 

Table 5. Summary statistics of sample plots. N/Plot, number of trees per plot; Height, 

height from the dominant trees in each plot; Age, average age per plot; Volume, volume 

of wood stocks on the plot; Annual increase, Annual growth in centimetres. 

4. METHODS 

4.1 Sentinel-1 data-only based method - the WCM 

The first biomass estimation method is based on the use of ESA’s Sentinel-1’s C-band 

SAR data. The model calibration is aided using additional the Pan-European Tree 

Canopy Density (TCD) and the CORINE Land Cover (CLC) geo-layers, both available at 

Copernicus Land Monitoring Services website, to pre-select representative “ground” and 

“dense forest” areas, which are then used for sampling from the SAR image product, i.e. 

backscatter intensity image, to find the representative models’ coefficients. Considering 

such rather flexible model, training procedure and that the prediction is based solely on 

Sentinel-1 data products, makes the method to be a highly transferable solution for 

biomass retrieval purposes. 

The first selected technique, namely the Water Cloud Model (WCM), uses SAR 

backscatter intensity measurements only. The methodology developed by Santoro et al. 

(2011) was used as the reference for this variant of the model. 

4.1.1 Model description 

4.1.1.1 Pre-processing 

Sentinel-1 Level-1 Ground Range Detected (GRD) data files need to be processed in 

order to get reliable good quality backscatter intensity measurements to be used in the 

WCM prediction. All data processing can be performed using the Sentinel Application 
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Platform (SNAP). Generally, after applying the precise orbit file to update state vectors 

and thermal noise removal operators to improve the global image accuracy geometrically 

and radiometrically, respectively, the radiometric calibration operator must be applied to 

convert digital pixel values to radiometrically calibrated backscatter. For this purpose, 

images are calibrated to 𝛽0 values, which represent the most basic radiometric 

calibration without accounting for the local incidence angles. For speckle filtering, the 

Multilook operator which simply averages over adjacent pixels, thus reducing the 

standard deviation of the noise level globally, is used. The radiometric bias caused by 

topographic land features is accounted for by applying the Terrain Flattening operator 

(Small, 2011). Finally, the inherent geometric distortions caused by the combination of 

side-looking SAR acquisition geometry and topographical variations of the scene are 

accounted for by orthorectifying the image using the Range-Doppler Terrain Correction 

operator. 

GRD data files pre-processing steps using SNAP summary: 

1) Application of precise orbit files; 

2) Thermal noise removal; 

3) Calibration to 𝛽0; 

4) Multi-looking 10 x 10 pixels in range and azimuth directions (for 100 m pixel size); 

5) Application of Terrain Flattening operator; 

6) Application of Range-Doppler Terrain Correction operator. 

4.1.1.2 The model formulation 

Sentinel-1 operates at the C-band with a central frequency of 5.404 GHz, which 

corresponds to a wavelength of approximatelly 5.55 cm. Consequently, the backscatter 

over a forested area can be considered to be a sum of two main contributions: the upper 

part of the forest canopy and the ground. The high attenuation of the signal in the upper 

part of the canopy leads to very little to no attenuation at all from the tree-ground double-

bounce interaction, or backscatter from the tree branches. Therefore, in a manner similar 

to the pioneer Water Cloud Model for vegetation by Attema & Ulaby (1978), the total 

forest backscatter can be described as the sum of direct scattering from the ground 

through the gaps in the canopy, ground scattering attenuated by the canopy and direct 

backscatter from vegetation, as given in Askne et al. (1997). Alternatively, it can be 

expressed as a function of the growing stock volume, 𝑉, thus relating forest backscatter 

to biomass directly, as given in Pulliainen et al. (1994): 
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Equation 4-1.    𝝈𝒇𝒐𝒓
𝟎 = 𝝈𝒈𝒓

𝟎 𝒆−𝜷𝑽 + 𝝈𝒗𝒆𝒈
𝟎 (𝟏 − 𝒆−𝜷𝑽) 

Here, the first term in the equation represents the backscatter contribution coming from 

the forest floor, and the second term accounts for the backscatter portion coming from 

the forest canopy. The three unknown coefficients that need to be estimated are the 

backscatter from the unvegetated or little vegetated land surface, 𝜎𝑔𝑟
0 , the backscatter 

from the dense vegetation fields, 𝜎𝑣𝑒𝑔
0 , and the 𝛽 parameter is an empirically defined 

coefficient expressed in ha/m3. These parameters can be estimated in two ways: by 

means of the least-squares regression using a reference dataset from the field inventory, 

or by estimating the coefficients directly from the SAR backscatter intensity image. The 

latter method is preferred due to its independence from in situ measurements, therefore, 

disclosing better spatial transferability features. 

4.1.1.3 Unknown parameters determination 

Parameters 𝜎𝑔𝑟
0  and 𝜎𝑣𝑒𝑔

0  must be defined for every SAR image individually due to the 

backscatter dependence on soil moisture and local weather conditions. The estimation 

of the parameters 𝜎𝑔𝑟
0  and 𝜎𝑣𝑒𝑔

0  can profit from forest layer products. Similarly to Santoro 

et al. (2011) using the MODIS Vegetation Continuous Fields tree cover product with 500 

m spatial resolution, we employ forest Tree Cover Density (TCD) High Resolution Layer 

(HRL) with 20 m spatial resolution, provided by Copernicus Land Monitoring Services. 

The product covers the majority of Europe including our test-site countries and is well 

suited for automatic selection of SAR backscatter values to be included in the “ground” 

and the “dense forest” classes. The estimate of 𝜎𝑣𝑒𝑔
0  is obtained after correcting the 

values of the backscatter for “dense forest” pixels, 𝜎𝑑𝑓
0 , for a residual contribution from 

the ground. It is reminded here that for this model the TCD product is used only for the 

creation of the “ground” and the “dense forest” masks for the estimation of 𝜎𝑔𝑟
0  and 𝜎𝑑𝑓

0 , 

and the actual tree cover density percentage values are not used for biomass estimation. 

Additionally, the Copernicus’ Corine Land Cover (CLC) layer is used to remove all the 

land cover/land use classes unrelated to vegetation. 

As mentioned earlier, the parameter retrieval is done directly from the SAR image, and 

similarly to the procedure described in Santoro et al. (2011), 𝜎𝑔𝑟
0  estimation is based on 

the following scheme: 

1) Masking out vegetation unrelated CLC classes on SAR backscatter image; 

2) Creation of TCD < 25% “ground” mask; 
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3) Mask erosion using N x N pixels sliding window, where N is approx. 10 pixels, 

but varies from scene to scene; 

4) 2-3% of all pixels are assigned to pure “ground” class; 

5) 𝜎𝑔𝑟
0  is the median value of the histogram. 

Differently to 𝜎𝑔𝑟
0 , the estimation of 𝜎𝑣𝑒𝑔

0  requires estimating 𝜎𝑑𝑓
0  first. Theoretically, 𝜎𝑣𝑒𝑔

0  

represents the backscatter in the case of a completely opaque forest canopy. However, 

even the densest forest canopy has gaps in it, meaning that some portion of backscatter 

is coming from the forest floor. To compensate for this contribution coming through the 

gaps in forest canopy, Equation 4-1 can be inverted to obtain an estimate of 𝜎𝑣𝑒𝑔
0  from 

the backscatter of the pixels forming “dense forest” class: 

Equation 4-2.    𝝈𝒗𝒆𝒈
𝟎 =

𝝈𝒅𝒇
𝟎 −𝝈𝒈𝒓

𝟎 𝒆
−𝜷𝑽𝒅𝒇

𝟏−𝒆
−𝜷𝑽𝒅𝒇

 

To estimate 𝜎𝑣𝑒𝑔
0 , Equation 4-2 requires knowledge of 4 other parameters: 𝜎𝑔𝑟

0  that is 

already found, 𝜎𝑑𝑓
0  to be found next, 𝛽 to be discussed after that, and a constant 𝑉𝑑𝑓 

describing the GSV value representative for the “dense forest” class, which can be set 

equal to the maximum GSV value expected at the area of interest (Maurizio Santoro et 

al., 2011). 

Similarly, to 𝜎𝑔𝑟
0 , the estimation of 𝜎𝑣𝑒𝑔

0  can be summarized by the following scheme: 

1) Masking out vegetation unrelated CLC classes on SAR image; 

2) Creation of TCD > 70% “dense forest” mask; 

3) Mask erosion using N x N pixels sliding window, where N is approx. 10 pixels, 

but varies from scene to scene; 

4) 2-3% of all pixels are assigned to pure “dense forest” class; 

5) 𝜎𝑑𝑓
0  is the median value of the histogram; 

6) 𝜎𝑣𝑒𝑔
0  is determined using Equation 4-2. 

The procedure of 𝜎𝑔𝑟
0  and 𝜎𝑑𝑓

0  parameters estimation is illustrated in Figure 8. 
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Figure 8. An illustration of 𝛔𝐠𝐫
𝟎  and 𝛔𝐝𝐟

𝟎  parameter estimation. Steps from left to right: 

mask creation, mask erosion (skipped), pixel selection and parameter estimation from 

the acquired histogram. 

Finally, the 𝛽 parameter is related to the vegetation dielectric and the forest structural 

properties, including seasonal effects such as frozen/unfrozen and leaf-on or -off 

conditions (J.T. Pulliainen, Mikhela, Hallikainen, & Ikonen, 1996). Therefore, it requires 

to be adapted to the local environmental and forest conditions. Generally, 𝛽 value varies 

between 0.004 and 0.012 m3/ha for mature forest (CCI_BIOMASS_ATBD_V1, by 

Maurizio Santoro, Cartus, & Lucas (2019)). 

4.1.1.4 AGB retrieval from a single image 

After the estimation of 𝜎𝑔𝑟
0  and 𝜎𝑣𝑒𝑔

0  and the selection of 𝛽 parameters, the WCM in 

Equation 4-1 can be inverted for GSV retrieval. However, special care should be taken 

when considering differently polarized backscatter intensity measurements. It was 

noticed that generally typical 𝜎𝑣𝑒𝑔
0  value exceeds 𝜎𝑔𝑟

0 , i.e. backscatter intensity from the 

vegetation is larger than from the ground, in the case of VH-polarized data, but the two 

parameters might switch places in the case of VV measurements. Consequently, the 

inverted equation sometimes differs for VH and VV datasets, as shown in Equations 4-3 

and 4-4, respectively: 
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Equation 4-3.    �̂� = −
𝟏

𝜷
𝒍𝒏 (

𝝈𝒗𝒆𝒈
𝟎 −𝝈𝒇𝒐𝒓

𝟎

𝝈𝒗𝒆𝒈
𝟎 −𝝈𝒈𝒓

𝟎 ) 

Equation 4-4.   �̂� = −
𝟏

𝜷
𝒍𝒏 (

𝝈𝒇𝒐𝒓
𝟎 −𝝈𝒗𝒆𝒈

𝟎

𝝈𝒈𝒓
𝟎 −𝝈𝒗𝒆𝒈

𝟎 ) 

It may happen that the estimated backscatter value, 𝜎𝑓𝑜𝑟
0 , drops out of the range enclosed 

by 𝜎𝑔𝑟
0  and 𝜎𝑣𝑒𝑔

0 , thus, leading to negative or infinite biomass estimate in Equations 4-3 

and 4-4. In such case, the estimate is assigned with an arbitrary GSV value: 0 m3/ha in 

the case of negative estimate and the GSVmax value in the case of infinity, as illustrated 

in the example given in Figure 9. The whole model working principle is outlined in the 

flowchart given in Figure 10. 

 

Figure 9. An example of assigning arbitrary GSV estimation values in the case of 

measured backscatter value falling out of 𝛔𝐠𝐫
𝟎  and 𝛔𝐯𝐞𝐠

𝟎  enclosed range. Left: VH case; 

right: VV case.  
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Figure 10. The WCM biomass estimation flowchart. 

Finally, in order to have matching estimation result units with the reference data, it may 

be needed to convert the GSV estimate to AGB, in the case of ground truth provided in 

mass rather than volume quantity. This can be done by assuming certain wood density 

from a priori knowledge about the forest, e.g. a GSV value of 300 m3/ha in boreal forest 

can be converted to its equivalent AGB value of roughly 150 Mg/ha (conversion factor: 

0.5), while the same GSV quantity would yield around 250 Mg/ha AGB in wet tropical 

forest (conversion factor: 0.85) (M. Santoro et al., 2018).  

Finally, it is known that such biomass retrieval procedure using Equations 4-3 and 4-4 is 

prone to produce significant errors in the case of estimated coefficients 𝜎𝑔𝑟
0  and 𝜎𝑣𝑒𝑔

0  are 

not being sufficiently distant to be able to accommodate the majority of the backscatter 

values coming from the vegetation at the reference plots. Based on the model studies, it 

was found that the optimal gap between the two bounding parameters should be around 

4 - 5 dB, therefore, in the case of |𝜎𝑔𝑟
0 − 𝜎𝑑𝑓

0 | < 4 dB, the smaller parameter should be 

further reduced, while the bigger one should be further increased to reach the sufficient 

distance between the two. Individual estimation settings for each test site and 

polarization will be presented in section 4.1.2. Results. 

4.1.1.5 Multi-temporal combining of images 

At Sentinel-1’s C-band data the biomass estimate for individual images is affected by 

residual speckle noise, a temporally random element caused by environmental 
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conditions and a more systematic kind of error component attributed to C-band 

backscatter insensitivity to tree stem volume. To decrease the amount of noise caused 

by these factors, a multi-temporal combination of biomass estimates, similar to Kurvonen 

et al. (1999) and Santoro et al. (2002), is used: 

Equation 4-5.    𝑩𝒎𝒕
̂ =

∑
𝒘𝒊

𝒘𝒎𝒂𝒙

𝑵
𝒊=𝟏 𝑩�̂�

∑
𝒘𝒊

𝒘𝒎𝒂𝒙

𝑵
𝒊=𝟏

 

In Equation 4-5 𝐵�̂� represents the 𝑖th estimate of AGB and 𝑤𝑖 =  |𝜎𝑣𝑒𝑔
0 − 𝜎𝑔𝑟

0 |
𝑖
 is the 

corresponding weight based on the difference between the two model parameters 

deputizing for the representative backscatter intensity values of the dense forest canopy 

and the forest floor for the image 𝑖. It is known that images containing forest backscatter 

measurements with stronger sensitivity to GSV are generally characterized by a larger 

difference between the two parameters, with the largest one in the stack of N images 

denoted by 𝑤𝑚𝑎𝑥. It is advised not to include images weighted below the 0.1 dB threshold 

for optimal performance. Such combination of images should enhance estimation 

accuracy, or at least provide a more reliable estimate than an average single image 

would. 

4.1.2 Results 

4.1.2.1 Espadán 

Final test setting: 

• Selected plots: P. halepensis (55), P. pinaster (22), Q. suber (7), all (80) 

• Time period: March-April, July & September 2015 and January 2016 (4 periods, 

10 images each) 

• Polarization: VH & VV 

• 𝜎𝑔𝑟
0  and 𝜎𝑑𝑓

0 :  

o 𝜎𝑔𝑟
0 = (𝜎𝑔𝑟

00 − 2) and 𝜎𝑑𝑓
0 = (𝜎𝑑𝑓

00 + 2) for VH polarization, and 

o 𝜎𝑔𝑟
0 = (𝜎𝑔𝑟

00 + 2.5) and 𝜎𝑑𝑓
0 = (𝜎𝑑𝑓

00 − 1) for VV polarization, where 𝜎𝑔𝑟
00 

and 𝜎𝑑𝑓
00 mark the initially estimated values 

• 𝛽 value: 0.008 ha/m3 

• Maximum GSV value: 200 m3/ha for P. halepensis, 300 m3/ha for Quercus and 

420 m3/ha for P. pinaster and all the plots together 

• GSV-to-AGB conversion coefficient: 0.66 for all except 0.75 for Quercus 
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Table 6 and Table 7 summarize the final biomass estimation results for Espadán test site 

using the Water Cloud Model with dual-polarization backscatter intensity data from 

Sentinel-1 based on the test setting outlined above. It is clear that the overall 

performance is quite poor as the 50 per cent rRMSE mark was surpassed only by P. 

halepensis stands using VH data, with the best results of 43 per cent coming from a 

combination of images for the periods of March-April and September in 2015. That 

particular March-April result, also visualized in Graph A in Figure 12, also marks the tied-

best achieved Pearson’s correlation coefficient of only 0.32 for the whole study.  

Overall, VH results show stability across all four seasons for each one of the four 

categories of trees, as the maximum difference is only 7 per cent in rRMSE found for the 

category involving all tree stands between the periods of March-April (75) and July (82). 

It can also be noticed that the estimation results for VH data always show better results 

(in rRMSE sense) for the periods of March-April and September over July and January. 

At the same time the periods March-April and September are attributed with larger mean 

gaps between 𝜎𝑔𝑟
0  and 𝜎𝑑𝑓

0  parameters. The always negative bias in Table 6 indicates 

about gross AGB under-estimation, and is also well illustrated by the left Graph in Figure 

11. The same figure also shows that biomass prediction for P. pinaster and Q. suber 

types of trees is much worse than that of P. halepensis, as it is also reflected in Graphs 

C, E and A in Figure 12. P. pinaster stands in particular demonstrate significant under-

estimation as the bias reaches even up to a negative 100 Mg/ha value. 

Overall, the situation is not any better in the case of VV polarization, as summarized in 

Table 7 and demonstrated in Figure 11. Although the performance is slightly worse by a 

couple of per cent in rRMSE sense in the category of all tree stands together as 

compared to VH data solution, the performance drops significantly to some 10 – 15 per 

cent difference in the case of P. halepensis stands, also demonstrated in Figure 12 

Graphs A and B comparison. Nevertheless, the accuracy switches sides between the 

two datasets when comparing the results at P. pinaster and Q. suber stands, as also 

illustrated in Graphs C & D and E & F in Figure 12. However, the results for these two 

particular types of tree stands also show a lot of discrepancies across the three time 

periods, especially in the case of Q. suber where the rRMSE takes on values of 78, 68 

and 60 for the periods of March-April, July and January, respectively, as indicated in 

Table 1Table 7. Interestingly, the gap between the two bounding parameters also seems 

to be increasing with the improving rRMSE result. 
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From the Pearson’s correlation coefficient perspective, the VV results are very confusing 

and mostly provide even negative coefficient. On the other hand, bias is based mostly 

around 0 value which is a good sign in an otherwise chaotic environment. 

To summarize everything up, the prediction results show reasonable performance only 

at P. halepensis tree stands (up to 43% rRMSE and 0.32 correlation coefficient value), 

reaching AGB level of approx. 100 Mg/ha, using VH dataset, which tends to provide quite 

stable albeit not very accurate results for all three types of individual tree stands. After 

reaching 100 Mg/ha mark the under-estimation becomes significant. On the other hand, 

VV dataset solution tends to outperform the other dataset at higher biomass levels 

(above 100 Mg/ha) in terms of rRMSE, however, Pearson’s correlation coefficient 

demonstrates high level of uncertainty in the results. Overall, the results seem to be 

improving with larger gap between 𝜎𝑔𝑟
0  and 𝜎𝑑𝑓

0  parameters. 

 
rRMSE 

(%) 
r 

bias 
(Mg/ha) 

std. 
dev. 

gap 
(dB) 

 
rRMSE 

(%) 
r 

bias 
(Mg/ha) 

std. 
dev. 

gap 
(dB) 

All stands 
MT comb. 

MAp 
75 -0.14 -17 32 4.8 

All stands 
MT comb. 

Jul 
82 -0.19 -13 42 4.7 

All stands 
MT comb. 

Sep 
78 -0.14 -8 39 4.9 

All stands 
MT comb. 

Jan 
79 -0.14 -14 40 4.5 

Halepensis 
MT comb. 

MAp 
43 0.32 -11 18 4.8 

Halepensis 
MT comb. 

Jul 
46 0.26 -7 22 4.7 

Halepensis 
MT comb. 

Sep 
43 0.29 -5 20 4.9 

Halepensis 
MT comb. 

Jan 
46 0.29 -10 22 4.5 

Pinaster 
MT comb 

MAp 
76 0.11 -98 18 4.8 

Pinaster MT 
comb. Jul 

78 0.04 -100 19 4.7 

Pinaster 
MT comb. 

Sep 
73 0.25 -94 18 4.9 

Pinaster MT 
comb. Jan 

77 0.06 -98 18 4.5 

Quercus 
MT comb. 

MAp 
78 0.12 -54 28 4.8 

Quercus 
MT comb. 

Jul 
79 0.19 -59 24 4.7 

Quercus 
MT comb. 

Sep 
75 0.21 -53 20 4.9 

Quercus 
MT comb. 

Jan 
80 0.04 -55 25 4.5 

Table 6. AGB retrieval statistics of the final WCM prediction test results using VH-

polarized Sentinel-1 backscatter intensity data assessed by the reference data for 

Espadán test site on all tree stands together (rows 1 & 2) and separately for Pinus 

halepensis (rows 3 & 4), Pinus pinaster (rows 5 & 6) and Quercus (rows 7 & 8) at 100 m 

pixel size in March-April, July & September periods of 2015 and January of 2016. Gap 
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(dB) is the difference measure between final 𝛔𝐠𝐫
𝟎  and 𝛔𝐝𝐟

𝟎  parameters. MT comb. means it 

is the weighted multi-temporal combination of all individual estimates for the period. 

 
rRMSE 

(%) 
r 

bias 
(Mg/ha) 

std. 
dev. 

gap 
(dB) 

 
rRMSE 

(%) 
r 

bias 
(Mg/ha) 

std. 
dev. 

gap 
(dB) 

All stands 
MT comb. 
MAp 

83 0.1 25 54 4.1 
All stands MT 
comb. Jul 

79 0.17 20 54 4.2 

      
All stands MT 
comb. Jan 

82 0.18 28 54 4.4 

Halepensis 
MT comb. 
MAp 

57 -0.17 0 24 4.1 
Halepensis 
MT comb. Jul 

56 -0.1 -3 24 4.2 

      
Halepensis 
MT comb. 
Jan 

58 -0.13 1 25 4.4 

Pinaster 
MT comb. 
MAp 

65 -0.33 -1 63 4.1 
Pinaster MT 
comb. Jul 

63 -0.26 -2 61 4.2 

      
Pinaster MT 
comb. Jan 

54 -0.06 -1 54 4.4 

Quercus 
MT comb. 
MAp 

78 -0.19 4 48 4.1 
Quercus MT 
comb. Jul 

68 0.01 0 39 4.2 

      
Quercus MT 
comb. Jan 

60 0.32 3 47 4.4 

Table 7. The same data as in Table 6 but for VV polarization data. Note, results for 

September are unavailable. 

 

Figure 11. Multi-temporal combination of all individual estimates for all tree stands for 

the period of March-April, 2015 for Espadán test area. Graph on the left represents VH 

data result, while VV data solution is on the right. 
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Figure 12. Multi-temporal combination of all individual estimates for the three types of 

tree stands (top: P. halepensis, middle: P. pinaster, bottom: Quercus) for the period of 

March-April, 2015 for Espadán test area. Graphs on the left represent VH data results, 

while VV data solutions are on the right. 
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4.1.2.2 Teruel 

Final test setting: 

• Selected plots: all P. sylvestris (51) 

• Time period: September 2015 (4 images) 

• Polarization: VH & VV 

• 𝜎𝑔𝑟
0  and 𝜎𝑑𝑓

0 :  

o 𝜎𝑔𝑟
0 = 𝜎𝑔𝑟

00 and 𝜎𝑑𝑓
0 = 𝜎𝑑𝑓

00 for VH polarization, and 

o 𝜎𝑔𝑟
0 = (𝜎𝑔𝑟

00 − 2) and 𝜎𝑑𝑓
0 = (𝜎𝑑𝑓

00 + 2) for VV polarization, where 𝜎𝑔𝑟
00 and 

𝜎𝑑𝑓
00 mark the initially estimated values 

• 𝛽 value: 0.008 ha/m3 

• Maximum GSV value: 280 m3/ha for P. sylvestris 

• GSV-to-AGB conversion coefficient: 0.66 

Figure 13 demonstrates the results of multi-temporal combination of Sentinel-1 

backscatter intensity measurements of 4 images over the month of September in 2015 

over the study area of Teruel based on the test settings indicated above. It should be 

noted here that the contrast between 𝜎𝑔𝑟
0  and 𝜎𝑑𝑓

0  parameters at VH polarization for the 

4 images averaged at 4 dB, therefore the range expansion was not needed. On the other 

hand, VV polarization showed that for these 4 images backscatter intensity from the 

forest is stronger than the backscatter from the ground by 1.3 dB on average, meaning 

that this time VV backscatter behaves according to the trend seen in VH polarization. 

Therefore, the range expansion was re-adjusted to the one that was initially designed for 

VH polarization in order not to oppose the parameter estimation results. 

Interestingly, VH data in Figure 13 does not show any signs of saturation as the 

estimation results keep on going up after the mark of 100 Mg/ha, seen in Espadán study 

case, is passed, and goes all the way up to 200 Mg/ha. It is also indicated by a 

respectable correlation coefficient of 0.45 and a bias value of 4 Mg/ha. The same cannot 

be said about VV data results, though, as the rRMSE increases by 21 per cent, 

correlation coefficient drops by two thirds, and bias grows significantly negative. 
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Figure 13. Multi-temporal combination of all individual estimates for Teruel study area. 

Graph on the left represents VH data result, while VV data solution is on the right. 

4.1.2.3 Thessaloniki 

Final test setting: 

• Selected plots: all (41) 

• Time period: September 2014 (4 images) 

• Polarization: VH & VV 

• 𝜎𝑔𝑟
0  and 𝜎𝑑𝑓

0 :  

o 𝜎𝑔𝑟
0 = (𝜎𝑔𝑟

00 − 2) and 𝜎𝑑𝑓
0 = (𝜎𝑑𝑓

00 + 2) for VH polarization, and 

o 𝜎𝑔𝑟
0 = (𝜎𝑔𝑟

00 + 2.5) and 𝜎𝑑𝑓
0 = (𝜎𝑑𝑓

00 − 1) for VV polarization, where 𝜎𝑔𝑟
00 

and 𝜎𝑑𝑓
00 mark the initially estimated values 

• 𝛽 value: 0.03 ha/m3 

• Maximum GSV value: 120 m3/ha 

• GSV-to-AGB conversion coefficient: 0.66 

Figure 14 demonstrates the results of multi-temporal combination of Sentinel-1 

backscatter intensity measurements of 4 images over the month of September in 2014 

over the study area of Thessaloniki based on the test settings indicated above. The 

average initially estimated contrast between the two bounding model parameters for the 

4 images was found to be equal to 1 dB for VH data and 0 dB for VV data, thus range 

expansion was implemented accordingly. Overall, both graphs in Figure 14 show poor 

estimation results with the VV one being the worst of the two. Disappointment is even 
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further aggravated by the fact that the estimation was performed in the range up to 100 

Mg/ha AGB, thus signal saturation is not really expected at this level. 

 

Figure 14. Multi-temporal combination of all individual estimates for Thessaloniki study 

area. Graph on the left represents VH data result, while VV data solution is on the right. 

4.1.3 Discussion 

It was found that in order to prepare the backscatter intensity data from the Sentinel-1 

Level-1 GRD data files for the biomass estimation task optimally, the two following 

factors are crucial: speckle filtering and final pixel size. It was understood that gross 

multi-looking and large final pixel size allow to achieve optimal forest biomass estimation 

results, as also agreed upon in Santoro et al. (2011). Both factors, essentially, convey 

the following message: forest backscatter is a complex system involving multiple 

backscattering mechanisms, and short Sentinel’s wavelength makes the backscatter 

images over the forested areas particularly speckled, therefore, significant spatial 

averaging is the most effective way to counter the problem for forest biomass related 

applications. 

Another important factor that can influence biomass estimation performance using SAR 

backscatter images is the dependence on scene topography due to side-looking SAR 

geometry. The impact is particularly evident in marginal forests due to typical 

mountainous scenery, as is also the case for all our study sites. For example, Figure 15 

shows the effect of SAR incidence angle on biomass prediction accuracy for the Teruel 

test site, distinguished by particularly complex terrain. The figure shows rRMSE of AGB 

estimate for each individual plot assessed by the corresponding incidence angle for both 

ascending and descending orbits. The linear trend lines indicate that even after applying 
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the state of the art terrain correction algorithm by Small (2011), the effect of terrain 

topography is still apparent, albeit not excessive, but creating bias in the estimates of 

individual images nonetheless. However, it is quite clear that the two trend lines show 

almost exactly the opposite trends caused by looking over the same area from two 

opposite acquisition angles. Therefore, the best practice when dealing with areas 

affected by complex topography is to combine an equal number of images from both 

ascending and descending orbits to achieve the least biased estimation results. An 

example of such estimation results, combining two estimates from each orbit, was given 

in Figure 13 for the Teruel test site, yielding an impressive 42 per cent rRMSE using VH 

polarization. 

In this study it was seen that a combination of estimates can provide a relatively reliable 

estimate as compared to individual images, i.e. the result will lie at the very least in the 

top half of all individual estimates, quite often in the top 10 – 20 per cent, but will rarely 

be the standalone best result unless large stacks of tens of images over the same area 

are used, e.g., in Santoro et al. (2011). Nevertheless, if no information is available to 

assess the accuracy of individual estimates, e.g., no ground truth data, the combined 

result will always be the most reliable pick. 

 

Figure 15. The effect of SAR incidence angle on biomass retrieval accuracy. 
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Perhaps the most important contributor to the performance of individual estimation 

results using the WCM is the contrast between initially estimated representative 

backscatter coefficients from the ground and the dense forest, i.e. |𝜎𝑔𝑟
0 − 𝜎𝑑𝑓

0 |. It was 

illustrated in Figure 12 and Figure 14 for Espadán and Thessaloniki test sites, 

respectively, that when the two initially estimated parameters are separated only by a 

small margin, the estimation results are relatively poor in comparison to when the gap is 

large, as seen in the case of Teruel study site results for VH-polarized data illustrated in 

Figure 13. 

The most important causes, besides the physical properties of backscattering objects, 

directly affecting the contrast between 𝜎𝑔𝑟
0  and 𝜎𝑑𝑓

0  are environmental and meteorological 

conditions, which, in fact, lead to the changes in the physical backscatter properties. In 

particular, the dielectric constant is susceptible. As a result, the researchers in literature 

commonly agreed that dry frozen conditions allow to achieve the best biomass retrieval 

results. In ideal conditions the ground is also covered in dry snow cover (Fransson, 

Smith, Askne, & Olsson, 2001). In such case, trees can show their true physical 

properties under stable conditions allowing to precisely distinguish between different 

biomass levels present at the test site based on backscatter measurements, which are 

further supported by a constant backscatter from the snow cover on the forest floor, in 

what is an ideal situation for such backscatter intensity based WCM to flourish. Such 

conditions, however, cannot really exist, not for a sufficient period of time anyway, in our 

study sites based in Spain and Greece due to the geographic peculiarities. The strongest 

effect on the backscatter signal we can observe is caused by rain. On multiple occasions 

the observations showed relatively better results from individual images obtained during 

rainy days. Furthermore, in the study over Espadán test site, the investigation was 

completed over four different periods representing the four seasons, as was shown in 

Table 8. After checking the weather conditions for the four periods at a nearby weather 

station, the following relationship was found: 

Period (10 images) Precipitation, mm Enhanced |𝝈𝒈𝒓
𝟎 − 𝝈𝒗𝒆𝒈

𝟎 |, dB 

March-April 2015 34.6 4.8 

July 2015 5.5 4.7 

September 2015 53.4 4.9 

January 2016 0.8 4.5 

Table 8. Relationship between precipitation and the contrast between the bounding 

parameters of the WCM for Espadán study site for the four selected periods. 
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As seen from Table 8, more precipitation generally leads to larger contrast between the 

two parameters. Moreover, the results in Table 6 confirm that the biomass estimation 

accuracy for the periods of March-April and September top the results achieved in July 

and January for all four categories of trees using VH data. It can be mostly explained by 

the fact that trees’ needles and, especially, leaves can gather some rain drops on their 

surface, which strengthens the volumetric backscatter signal (Klaassen, van der Linden, 

Ballast, & Esa, 1997), particularly notable at higher frequencies. Interestingly, the results 

for oak category (the only broadleaved trees in the study site) show the estimation 

accuracy increasing with increasing amount of precipitation for all four periods in what 

may or may not be a coincidence. However, such findings do not go hand in hand with 

the literature, as most of the researchers refer to such wet conditions as unstable (Cartus, 

Santoro, Schmullius & Li, 2011). Therefore, we abstain from giving definite 

recommendations as our results do show a certain element of uncertainty, but it does 

invite to look into this subject again. 

Meanwhile, other meteorological conditions like temperature or humidity seem to have 

very little to no effect on the backscatter signal, given that it does not stand for extreme 

cases, e.g., dry frozen conditions. Of course, colder temperatures can see trees drop 

their leaves, which obviously changes the signal, but once again it was not the case for 

our test sites, therefore we could not investigate that effect either. 

Finally, throughout the entire WCM Results section the two different polarizations were 

seen to produce very different performances. In the majority of cases, though, the VH 

polarization was seen to top its neighbour both in estimation accuracy and behavior 

predictability, confirming its superior status in literature too. Even though its superiority 

was evident in the Teruel results, given in Figure 13, where it exceeded VV polarization 

42 vs. 63 per cent in rRMSE due to much stronger initially estimated contrast between 

the bounding parameters, it was not that clear in the case of Espadán where both 

polarizations showed similar contrasts. While VH results showed narrower, more 

confined estimation results with much larger correlation coefficient, the VV results tended 

to be largely spread and have negative correlation coefficients, although accuracy was 

sometimes even higher, as shown in Figure 12. The comparison, thus, allowed to make 

the following conclusions: 1) VH-polarized backscatter is more reliable because 

generally shows larger contrast between the ground and the forest canopy, while VV 

backscatter does not even show consistency in which parameter between 𝜎𝑔𝑟
0  and 𝜎𝑑𝑓

0  

carries the stronger backscatter, and; 2) in the case of both polarizations showing 
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similarly low contrast, the VH polarization is more likely to show reliable results at lower 

biomass levels (< 100 Mg/ha), but will saturate after that, however, the VV backscatter 

seems to be less affected by saturation and is therefore likely to provide a better estimate 

above that (> 100 Mg/ha), as suggested in Figure 11 and Figure 12. 

We suspect the results in Thessaloniki study area showed no reliability due to very low 

vegetation biomass levels, as the forests present there are very young and the signal 

shows no difference between different plots, as well as questionable quality of old ground 

truth data from 2007 adds to the uncertainty. 

Finally, the GSV-to-AGB conversion coefficient and the 𝛽 parameter selection add 

further errors to the estimation process. On the other hand, the possibility of adapting to 

the local scenes by “learning” from the SAR image about typical backscatter values 

coming from the “ground” and the “dense forest” surfaces boost the WCM transferability 

properties significantly. 

4.2 Interferometric Water Cloud Model – Inversion Model 

4.2.1 Introduction 

Interferometric Synthetic-Aperture Radar (InSAR) has been used in various applications 

involving vertical profiling in the landscape such as vegetation heights or land elevation 

models. This is due to its phase information corresponding to vertical profile information. 

InSAR has the potential to become an important tool for mapping and monitoring of 

above-ground dry biomass (AGB), which is a forest parameter important for climate 

modelling (Koch, 2010). But, deriving forest biomass values from InSAR data is non-

trivial and scattering from forests must be understood and the dependence of InSAR 

observables on biomass, environmental factors, and InSAR system configuration must 

be modelled (Soja, Askne & Ulander, 2017). 

Many such models exist, one of which is the Interferometric Water Cloud Model (IWCM). 

Similar to the Water Cloud Model (WCM), the IWCM models forest as a random volume 

with gaps located above a ground surface. The semi-empirical Interferometric Water 

Cloud Model, IWCM, is based on models for backscattering coefficient, coherence and 

phase height (J. Askne & Santoro, 2012; J.I.H. Askne et al., 1997). 
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4.2.2 IWCM Theory and Method Description 

4.2.2.1 Overview 

In the IWCM method, the backscatter is identified similar to the Water Cloud Model 

(WCM) method (Attema & Ulaby, 1978), but generalized to include gaps in the vegetation 

cover by the introduction of the area-fill η, the area fraction covered by vegetation. 

Equation 4-6.   𝝈for
𝟎 = 𝜼[𝝈𝒈𝒓

𝟎 𝒆−𝜶𝒉 + 𝝈𝒗𝒆𝒈
𝟎 (𝟏 − 𝒆−𝜶𝒉)] + (𝟏 − 𝜼)𝝈𝒈𝒓

𝟎    

where 𝜎𝑔𝑟
0  is the ground backscattering coefficient, 𝜎𝑣𝑒𝑔

0  is the vegetation layer 

backscattering coefficient, h is the height of the layer of random scatterers (m), and α is 

the attenuation coefficient (m−1). Similar to the WCM method described in Section 4.1, 

these three parameters, 𝜎𝑔𝑟
0 , 𝜎𝑣𝑒𝑔

0  and α are the unknown parameters that need to be 

estimated.  

In order to estimate the unknown variables, a new semi-empirical method using least-

squares error optimization introduced by Askne et al. (2017) is used in this section. To 

achieve this, a set of equations (presented in the next section) that describe the biomass 

as a function of the backscattering coefficient and coherence data from SAR images is 

used. The ground and vegetation backscatter coefficients ( 𝜎𝑔𝑟
0   and 𝜎𝑣𝑒𝑔

0 ), canopy 

attenuation (α), and zero-biomass coherence (γsys) in the resulting set of equations are 

then computed using least squares optimization.  

4.2.2.2 Method Description 

In the IWCM Method, the complex coherence coefficient is the main interferometric 

observation used. It is a measure of similarity between two images. Coherence typically 

has several contributions, including terms for volume decorrelation and for temporal and 

system decorrelation (J. Askne, Santoro, Smith, & Fransson, 2003; Maurizio Santoro et 

al., 2002). 

The original method as described by Askne et al. (2017) utilizes TanDEM-X data, where 

due to the bistatic observations with zero baseline, the temporal correlation can be 

neglected, and the coherence equation reduces to 

Equation 4-7     �̅� = 𝜸𝐬𝐲𝐬
�̅�𝒗𝒐𝒍+𝒎

𝟏+𝒎
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where 𝛾sys is the zero height coherence, 𝛾vol is the volume decorrelation (J.I.H. Askne et 

al., 1997) determined by α and h, and m is the ground-to-volume scattering ratio: 

Equation 4-8    �̅�𝒗𝒐𝒍 =
𝜶

𝜶−𝒋𝒌𝒛

𝒆−𝒋𝒌𝒛𝒉−𝒆−𝜶𝒉

𝟏−𝒆−𝜶𝒉
 

Equation 4-9   𝒎 =
𝝈𝒈𝒓

𝟎

𝝈𝒗𝒆𝒈
𝟎

𝟏−𝜼(𝟏−𝒆−𝜶𝒉)

𝜼(𝟏−𝒆−𝜶𝒉)
 

where kz = 2π/HoA and HoA is the height of ambiguity. The phase height, i.e. the height 

of the phase center, zest, are determined by 

Equation 4-10    𝒛𝒆𝒔𝒕 = −
𝑯𝒐𝑨

𝟐𝝅
𝐚𝐫𝐠 (�̅�) 

In addition to the parameters that can be obtained from SAR images, there are a few 

that need ground data, making this method only semi-empirical as mentioned before. 

The area fill factor used in Equation 4-9 is closely related to the forest structure, and hence 

obtained from ground measurements. A relation of it is expressed by  

Equation 4-11   𝜼(𝑽) = 𝜼∞(𝟏 − 𝒆−𝝀𝟎𝑽) 

where V is the stem volume and η∞, and λ0 are factors representing the maximum value 

of the area-fill and the increase with V. In this method, we will here use 𝜂∞ = 0.9, and 𝜆0 

= 0.01 ha/m3, similar to the value used in the literature for coniferous forest.  

Once the stem volume for each forest stand is calculated, the biomass can then be 

directly estimated using the formula  

Equation 4-12   𝑩 = 𝑩𝑭 ∗ 𝑽𝒊 

To summarize, the IWCM is a semi-empirical model using radiative transfer theory to 

model penetration through the partially transparent canopy and geometrical optics to 

model penetration through canopy gaps. The unknown model parameters α, 𝜎𝑔𝑟
0   and 

𝜎𝑣𝑒𝑔
0  , and γsys are  assumed to be spatially invariant constants with the first three 

describing the properties of a certain forest type over a large area. Of the three modeled 

quantities (γ, zest, and 𝜎𝑓𝑜𝑟
0 ), zest is a function of α and 𝜎𝑔𝑟

0 /𝜎𝑣𝑒𝑔
0 . γ is also dependent on 

γsys, whereas 𝜎𝑓𝑜𝑟
0  is dependent on α, 𝜎𝑔𝑟

0   and 𝜎𝑣𝑒𝑔
0 . The vertical and horizontal structures 

of the forest are in the model described by h and η.  
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To solve for these interrelated set of equations, the inverse modeling approach is used 

as described in the following section. 

4.2.3 IWCM parameter Estimation using Inverse Modeling 

From the set of equations in the previous section, the IWCM parameters α, 𝜎𝑔𝑟
0   and 𝜎𝑣𝑒𝑔

0  

, and γsys are estimated using inverse modeling. The observations of phase height, H i, 

coherence, Ci, and backscatter, 𝑆𝑖 = √𝑆1,𝑖 ∗ 𝑆2,𝑖   where 𝑆1,𝑖  and 𝑆2,𝑖  are backscatter 

coefficient observations from each of the two satellites and the index i refers to each of 

the stands. The backscattering coefficients and coherence values are computed for each 

forest stand. Parameters , 𝜎𝑔𝑟
0   and γsys correspond to backscatter and coherence for 

stem volume equal to zero, whereas parameter 𝜎𝑣𝑒𝑔
0  corresponds to backscatter intensity 

for complete canopy cover, η = 1, and αh ≫ 1. The phase height typically increases with 

stem volume V, so the first estimates of 𝜎𝑔𝑟
0   and 𝜎𝑣𝑒𝑔

0  , and γsys can be obtained by 

analyzing backscatter and coherence for low and high phase height values.  

Besides the IWCM parameters, α, 𝜎𝑔𝑟
0   and 𝜎𝑣𝑒𝑔

0 , and γsys, assumed spatially invariant, 

the stem volumes, Vi, for all stands are also unknown. Since the phase height varies 

over a large range in relation to the spread of the observations and a large number of 

looks is used during phase height estimation, we can neglect the uncertainty in phase 

height estimation and equate the IWCM phase height model zest to the observed phase 

height, Hi. The coherence and backscatter models are used to obtain estimates of model 

parameters α, 𝜎𝑔𝑟
0   and 𝜎𝑣𝑒𝑔

0  , and γsys, which thereafter will be used to obtain the stem 

volume and biomass estimates for each stand. 

To achieve this, we first solve for the stem volumes Vi as a function of the observed 

phase height and (so far unknown) values for α, 𝜎𝑔𝑟
0   and 𝜎𝑣𝑒𝑔

0 , and γsys. We obtain a 

function for stem volume estimation such that Vi = V(α, 𝜎𝑔𝑟
0 /𝜎𝑣𝑒𝑔

0 ,Hi). With this expression 

for Vi we use coherence and backscatter to estimate the model parameters α, 𝜎𝑔𝑟
0   and 

𝜎𝑣𝑒𝑔
0  , and γsys by minimizing the summed squares of the differences between the 

modeled and measured values of coherence and backscatter for all N stands.  

Equation 4-13   𝚫𝜸(𝜶, 𝝈𝒈
𝟎 , 𝝈𝒗𝒆𝒈

𝟎 , 𝜸𝐬𝐲𝐬) =

                               √
𝟏

𝑵
∑  𝑵

𝒊=𝟏 [𝜸 (𝜶,
𝝈𝒈𝒓

𝟎

𝝈𝒗𝒆𝒈
𝟎 , 𝜸𝒔𝒚𝒔, 𝑽 (𝜶,

𝝈𝒈𝒓
𝟎

𝝈𝒗𝒆𝒈
𝟎 , 𝑯𝒊)) − 𝑪𝒊]

𝟐
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Equation 4-14   𝚫𝝈(𝜶, 𝝈𝒈𝒓
𝟎 , 𝝈𝒗𝒆𝒈

𝟎 , 𝜸𝒔𝒚𝒔) =

                            √
𝟏

𝑵
∑  𝑵

𝒊=𝟏 [𝝈𝒇𝒐𝒓 (𝜶, 𝝈𝒈𝒓
𝟎 , 𝝈𝒗𝒆𝒈,

𝟎 , 𝑽 (𝜶,
𝝈𝒈𝒓

𝟎

𝝈𝒗𝒆𝒈
𝟎 , 𝑯𝒊)) − 𝑺𝒊]

𝟐

 

The IWCM parameters are determined by fitting the model to the observations, Hi, Ci, 

and Si. When the IWCM parameters are determined the stem volume, Vi, and hence 

biomass, B = BF⋅Vi for each stand can be determined.  

4.2.4 Study Site and Data 

The study site is chosen as the forest sites in Espadán, Castellon and Nogueruelas, 

Teruel in Spain. The sites are described in detail in Section 3.  

For SAR data, Sentinel-1 SLC data was used instead of TanDEM-X data CoSSC data 

due to its unavailability. This invalidates the assumption of negligible temporal 

decorrelation on which the previous equations are based on. However, as an attempt to 

produce a working chain for this method, Sentinel-1 SAR data was used. Two SAR 

images from Sentinel-1 from September 2015 covering both the study sites were used 

to produce the interferogram. Only VV polarization is considered in this study to maintain 

similarity to the original method. 

Additionally, DSM and DTM data of the two sites from the LiDAR dataset described in 

Section 2.4 of this document were used in the InSAR process.  

4.2.5 Application of IWCM Method  

4.2.5.1 Data Processing: 

Using the Sentinel-1 SAR image pairs, an interferogram was generated using the 

following steps using TOPSAR tools in SNAP software.  
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Figure 16. InSAR Processing Steps 

However, as expected, the generated interferogram did not produce good results for the 

InSAR phase height estimation. Only the backscatter and coherence data from the SAR 

data was used.  

 

Figure 17.SAR images of Teruel Region. Left: Backscatter, Right: Coherence 
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Instead here, the LiDAR data is used in the calculation of the vegetation height. Using 

the QGIS software, a raster calculation operation is performed subtracting the DTM from 

the DSM, which yields primarily tree heights. Heights obtained at the plot locations from 

this new layer simulate the phase heights from the original method proposed by Askne 

et al. (2017). 

 

Figure 18. DSM - DTM Raster of Espadán Region, with field plot locations shown. 

The coherence, backscatter and “phase height” data is then used in the following steps.  

4.2.5.2 Method Implementation: 

Using MATLAB, Eq. 4-7 to 4-11 are written as a set of equations of interdependent 

variables. Since the literature and the chosen site for this method are both coniferous 

forests, acquired from TanDEM-X satellites, it is assumed that the identified values from 

the site in the literature can be approximated in the case as well. The values of the 

constants or initial values of variables are used from the literature as follows:  

Variables Values 

𝛾sys 0.75 

𝜎𝑔𝑟
0  0.14 

𝜎𝑣𝑒𝑔
0  0.25 

HoA 50 

𝜂∞ 0.9 

𝜆0 0.01 

Table 9. Values of Variables assumed from Askne et al. (2017). 
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With the above mentioned initial values For α, 𝜎𝑔𝑟
0 , 𝜎𝑣𝑒𝑔

0 , 𝛾sys, appropriate step sizes were 

set for these variables within the range of their possible values. The following steps were 

applied:  

1. The modeled phase height 𝑧𝑒𝑠𝑡 is set equal to the observed phase height Hi  

2. The IWCM parameters are determined by fitting the model to the 

observations, Hi (phase height), Ci (coherence), and Si (backscatter) from ith 

forest plot.  

3. The best fit is estimated by finding the best values of α, h and stem volume 

V for which the least square error of values is minimized, as given in Eq. 4-

13 and Eq. 4-14. 

4. Based on the best fit parameter values, the stem volume values are 

identified using Eq. 4-11. Biomass is calculated for each stand using the 

following formula 𝐵 = 𝐵𝐹 ∗ 𝑉𝑖 as given in Eq. 4-12 with BF assumed to be 

0.512 Mg/ha here. 

4.2.6 Results and Discussion 

Based on the method described in the previous section, the “best fit” IWCM parameters 

were estimated to be: 

α = 0.125, γsys = 0.769, σgr
0 = 0.215, and σveg

0 = 0.278 

Based on these values, the stem volume and subsequently the Biomass values (in AGB) 

was calculated for each plot using the Eq. 4-12. For both the sites, the predicted biomass 

is then compared with the reference biomass estimated from field measurements for 

analyses of the results. However, there are limitations to the analyses.  

Firstly, it is expected that there is a large error in the predictions due to the violation of 

the assumption that there is no temporal decorrelation in Eq. 4-7. The temporal 

decorrelation is present in the Coherence and backscatter value obtain from the Sentinel-

1 SAR acquisition pair, which span over several days, as opposed to the near real-time 

TanDEM-X acquisitions. This major violation of assumption in the implementation of this 

method due to unavailability of TanDEM-X data as mentioned before, severely limits the 

accuracies achievable in the original literature. Additionally, this also limits the number 

of type of statistical and geophysical analyses that can be done to explain the results 

that are obtained using the method, as most observations may not be in any case 

adequately explained due to the application of a method not suited for Sentinel-1 data 

used.  
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The temporal decorrelation error is not insignificant and can mask most other 

phenomenon with lower amplitudes. Therefore, no spatial analyses have been 

performed due to the fact such error analyses might be rendered meaningless when 

compared to significant error from temporal decorrelation. For instance, since the study 

sites are very hilly, it is expected that layover and shadow effects affect SAR coherence 

and backscatter even after terrain corrections steps but cannot be satisfactorily explained 

due to the lower magnitude of its impact compared to temporal decorrelation noise. 

Similarly, assumed values of field parameters from the study site in the literature, as well 

as environmental factors such as precipitation and temperature and its impact on the 

SAR SLC observation are not considered, which are known as considerable factors to 

be taken into account for the IWCM method in general. Regardless of these limitations 

in possible analyses, an attempt is made at explaining the general trends and major 

observations from the resulting statistics. 

Site 
Mean AGB 
Reference 

(Mg/Ha) 

AGB Mean 
Estimated 

(Mg/Ha) 
rRMSE 

Mean Bias 
(Ref - Est) 

(Mg/Ha) 
r 

Espadán 

(all stands) 
91.0 76.5 Mg/Ha 42.8%, 

underestimated 
17.1 0.76 

P. halepensis 

(54 stands) 
69.1 62.3 37.2% 6.75  0.56 

Q. suber 

(8 stands) 
112.3 93.13 44.1% 19.2  0.66 

P. pinaster 

(18 stands) 
147.6 109.7 45.2% 37.9  0.73 

Nogueruelas 

(P. sylvestris) 

(47 stands) 

95.8 70.5 Mg/Ha 48.3%, 

underestimated 
25.4 0.72 

Table 10 AGB Results using IWCM Method 

For this, several statistical parameters are used, primarily the rRMSE, along with the 

mean bias, and Pearson correlation coefficient “r”. The “r” value signifies better 

correlation between prediction and measurements if closer to value 1, uncorrelated if 0, 

and negatively correlated if close to -1.  The mean bias is the difference between the 

reference and the predicted biomass, with positive values signifying underestimation and 

negative values signifying overestimation. The prediction is said to be acceptable if 
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rRMSE is under 30%. The metrics obtained for each site using the IWCM method is 

summarized in Table 10.  

Supporting this expectation, in general, most estimations are not very accurate. The P. 

halepensis stands of Espadán performs best with the highest accuracy and has the 

lowest mean bias and best rRMSE amongst all stands, at around 36%. The other two 

stands P. pinaster and Q. suber in Espadán, and the P. sylvestris stand in Nogueruelas 

site all suffer from large errors, primarily with lower estimated values compared to the 

reference values, as seen in Fig.19. 

 

Figure 19 IWCM Biomass Estimation - Espadán 

As seen in the Table 10, in all cases, the prediction value is always underestimated 

compared to the reference values. This is explained by the saturation levels of Sentinel-

1 C-band SAR backscatter signals for biomass at values higher AGB values, typically 

over 100 Mg/ha. Only in the case of the P. halepensis site is the mean bias found to be 

low, which supports the explanation about the saturation, since the mean biomass value 

of the P. halepensis stands is much lower than the saturation limits of C-band data.    

In terms of rRMSE, it can be seen that the rRMSE of both the sites are greater than 40%, 

which indicates that the estimated biomass poorly relates to the measurements from the 

field data. The error can largely be attributed to the temporal decorrelation effect, present 

in the coherence and backscatter values used in the inverse modelling steps. The error 
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is especially high for the P. pinaster stands in Espadán and P. sylvestris stands in 

Nogueruelas. This higher error is explained in general by the saturation of C-band at 

higher biomass values.  

In the case of Espadán, P. pinaster stands can be seen to be suffering from the effect of 

saturation the most, since the stand has high biomass values of well over 100 Mg/ha. A 

corresponding lowering of the estimated values can be seen in Fig. 19 as the biomass 

increases. This can be observed in Q. suber sites as well, however to a much smaller 

degree, which is likely due to the low statistical number of the Q. suber stands, leading 

to not representing the full picture. In the end, this results in Q. suber stands having a 

better overall accuracy in rRMSE term and in terms of mean bias. From Fig. 20, it can 

be observed that this is true in the case of P. sylvestris in Nogueruelas site as well.  

 

Figure 20 IWCM Biomass Estimation - Nogueruelas 

In terms of ‘r’ value, the two sites perform similarly, with Espadán performing slightly 

better. In Espadán, although the most frequent P. halepensis stands have best rRMSE, 

the ‘r’ value is quite low, the lowest amongst all stands. The remaining stands have 

similar ‘r’ values, close to the average of the two sites.  

Finally, although it is expected that the results of the IWCM method be largely erroneous 

due to the effect of temporal decorrelations in the measurements, which voids the initial 
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assumptions, the use of Lidar data for the phase height measurements has resulted in 

lower errors. In summary, the results show that the IWCM method, despite being 

developed for TanDEM-X data, is able to provide biomass estimation for use with 

Sentinel-1 data along with Lidar data, although with significant errors. The impact of the 

temporal decorrelation could be mitigated if TanDEM-X data is available for a selected 

study site.  

4.3 LiDAR 

In this chapter we present the methodology followed for the estimation of the AGB at plot 

level using airborne LiDAR data from the acquisition and pre-processing of the ALS data 

to the estimation of the AGB at plot level. 

In order to carry out the following methodology, it is essential to have the following data 

sets: 

- Discrete LiDAR data, preferably with high points density per square meter (>4 

pts/m2). To obtain Elevation and intensity distribution ALS metrics. 

- Field data from a set of sampling plots, usually circular plots of 15 to 20 meters 

radius where the tree attributes necessary to estimate the biomass by allometric 

equations for each species have been collected. 

Once the LiDAR point cloud was pre-processed, the AGB values of each plot were 

calculated and the height and intensity metrics of the LiDAR point clouds for each plot 

were obtained, we generated the multiple linear regression models. Elevation and 

intensity distribution ALS cloud metrics were used as independent variables in AGB 

predictive models. Before the generation of the regression models a selection of the 

metrics was made using the Akaike information criterion (AIC) (Akaike, 1973) with a 

maximum of three metrics per combination. Multiple linear regression models were 

generated for each study area, and for each type of forest, by combining and discarding 

particular plots, where the dependent variables was biomass. The models were 

evaluated by comparing the adjusted coefficient of determination (Radj
2) and the root 

mean square error (RMSE), all obtained by leave-one-out cross-validation (LOOCV). 

Models have only been generated for biomass because, as explained in section 3.4.1, 

CO2 is obtained from biomass values. 

Figure 21 shows the workflow for the treatment and classification of the LiDAR points to 

obtain the Digital Terrain Model (DTM), the Digital Surface Model (DSM) and Canopy 
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High Model (CHM) for the entire study area and the steps to generate the AGB estimation 

models. 

 

Figure 21. Overview of the methodological approach. 

The following sub-sections describe each of the steps in detail. 

4.3.1 ALS Acquisition 

In both areas the Lidar flights were planned under the same parameters. Both, in 

Espadán and Nogueruelas the flight was carried out on September 16th, 2015. The 

sensor used to acquire the data from both zones was a LiteMapper 6800 with an average 

pulse density of 14 pulses·m–2. In Espadán, the flight altitude ranged from 600 to 820 m 

above sea level with a minimum overlap of 55% and a maximum of 77% between flight 

lines. In the area of Nogueruelas the flight altitude was from 1,500 to 1,700 meters above 

sea level, with a minimum overlap between flight lines of 55% and maximum of 80%. 

The figures 22a and 22c show the overlap between the flight lines for Espadán and 

Nogueruelas, respectively. The figures 22b (Espadán) and 22d (Nogueruelas) represent 

the return per square meter. The return density images clearly show how the density 

increases in all areas of the flight line overlap. 
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Figure 22. Airborne laser scanning acquisition. Figures 22a and 22b refer to Espadán and 

figures 22c and 22d represent the area of Nogueruelas. The black points are representing 

the plots. The figures 22a and 22c show the flightline overlap with blue indicating one 

flightline, turquoise indicating two, yellow indicating three flightlines, orange indicating 

four flightlines and red five or more flight lines. The figure 22b and 22d show the return 

density, dark blue colour means 1 return and red colour means 25 or more return per 

square meter. 

4.3.2 LiDAR data pre-processing 

First the filtering of irregular points was carried out. This was done using an adaptive 

filter that removed all outliers above 2 m from a local neighborhood throughout the study 

area. 

The next step was to determine all the points corresponding to the ground. For this 

purpose, the points were classified with the lasground algorithm of LAStools (Isenburg, 

2018) which is a variation of the algorithm described by Axelsson (2000). This algorithm 

depends on two parameters, a search window and a maximum angle criterion defined 

by the user. The points classified as terrain generate an area by interpolating these 

points called Digital Terrain Model (DTM). From the original cloud and establishing a 

defined cell size according to the density of LiDAR points, the values of the points with 
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maximum elevation in each cell were selected. Once these points were interpolated, a 

Digital Surface Model (DSM) was generated. The Canopy High Model (CHM) was 

generated by subtracting the DTM from the DSM. 

The DTM, DSM and CHM were all generated with a spatial resolution of 0.5 meters. In 

Espadán, the average number of points to generate the DTM, DSM and CHM was of 8.2 

all returns per square meter and 5.1 last returns per square meter. For the Nogueruelas 

area the average number of points was 8.1 all returns per square meter and 5.4 last 

returns per square meter. 

To calculate the error obtained in the DTM, the centers of the plots were used, since they 

were measured in the field by a GPS model Leica GNSS 1200 with an RTK accuracy of 

± (10 mm + 1 ppm) and ± (20 mm + 1 ppm) in horizontal and vertical, respectively. The 

RSME of the Espadán DTM in the Z coordinate is 0.316 m and for the Nogueruelas DTM 

RMSE is 0.274m. 

4.3.3 Metrics extraction 

The calculation of the descriptive characteristics or attributes is carried out at plot level, 

so that it can be compared with the data collected in the field in order to generate the 

models later (Figure 19). 

Using FUSION (McGaughey, 2016) height and intensity statistics from the normalized 

height point cloud were calculated for each plot. In the extraction of metrics, only the 

points above 2 m were considered, leaving out the understory vegetation. Table 11 

shows the different metrics analysed. 

Name Class Reference 

Total number of returns 
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Count of returns by return number (maximum 9 discrete return) 

Minimum value of * 

Maximum value of * 

Mean value of * 

Median value of *(as 50th percentile) 

Mode value of * 

Standard deviation value of * 

Interquartile distance value of * 

Skewness value of * 

Kurtosis value of * 

AAD: Average Absolute Deviation value of * 

MADMedian: Median of the absolute deviations from the overall 

median value of * 
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Name Class Reference 

MADMode: Median of the absolute deviations from the overall 

mode value of * 

L-moments (L1, L2, L3, L4) value of * 

L-moments skewness value of * 

L-moments Kurtosis value of * 

Percentil values of * 

Canopy relief ratio ((mean-min)/(max-min)) 

Generalized means for the 2nd and 3rd power: Elev. quadratic 

mean and Elev. cubic mean 

Percentage of first returns above a specified height (canopy 

cover estimate) 

H
e

ig
h
t 

Percentage of first returns above the mean height/elevation 

Percentage of first returns above the mode height/elevation 

Percentage of all returns above a specified height 

Percentage of all returns above the mean height/elevation 

Percentage of all returns above the mode height/elevation 

Number of returns above a specified height/total first returns * 

100 

Number of returns above the mean height/total first returns * 100 

Number of returns above the mode height/total first returns * 100 

Table 11. Description of ALSD metrics (see McGaughey, 2016, for further description). 

4.3.4 Modelling 

To generate the models, the reference biomass per plot (ground truth) was available. 

The estimation models were therefore calculated using multiple regression techniques, 

considering biomass as a dependent variable and the height and intensity metrics 

derived from the LiDAR data described in section 4.3.3 as independent variables. 

Initially, a criterion for the selection of the independent variables was applied by means 

of step-by-step multiple regression. The intention was to generate models that had a 

maximum of 3 variables. This method consists of introducing variables into the model 

according to their relevance in the regression or eliminating them according to their 

correlation with other variables. Thus, a multiple linear regression of the type (limited to 

three independent variables) is obtained: 
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Equation 4-15   𝑨𝑮𝑩 = 𝒂𝟎 +  𝒂𝟏𝒙𝟏 +  𝒂𝟐𝒙𝟐 + 𝒂𝟑𝒙𝟑 

Where AGB is the aerial biomass (dependent variable), 𝑥1 the metrics used in the model 

(independent variables) and 𝑎1the coefficients obtained by the ordinary least-squares 

regression method.  

The step-by-step method requires some mathematical criteria to determine whether the 

model becomes better or worse with each addition or extraction. In this case the criterion 

of Akaike (AIC) (Akaike, 1973) is used because it is more restrictive and offers a relative 

estimation of the information lost by a given model: the less information a model loses, 

the higher the quality of that model. 

It was decided to make a single model for Nogueruelas since there is only one dominant 

tree species. On the contrary, for Espadán three different models were generated 

because there are different types of plots depending on the dominate species 

(classification made in sub-section 3.4.1). It was decided to make a general model for 

the whole area, a model only for the species P. halepensis discarding the regenerated 

P. halepensis plots because of their difference in structure and density, and a model for 

the mixed P. pinaster and Q. suber. Type T2 (P. halepensis regenerated) and T4 (Q. 

ilex) were discarded for not having enough plots to perform the model. 

The evaluation of the models is made relating the AGB observed in field and the 

predicted ones from the LiDAR data, analyzing the determination coefficient R2, defined 

as a descriptive measure of the global adjustment of the model that represents the 

proportion of variance explained by the same one. The R2 coefficient is calculated as the 

square of the correlation coefficient of the moment product of Pearson: 

Equation 4-16   𝑹𝟐 =  
∑ (𝜶𝒊−𝜶𝒊̅̅ ̅)∙(𝜶𝒊𝒐𝒃𝒔−𝜶𝒊𝒐𝒃𝒔̅̅ ̅̅ ̅̅ ̅𝑵

𝒊=𝟏 )

√∑ (𝜶𝒊−𝜶𝒊̅̅ ̅)𝟐𝑵
𝒊=𝟏 ∙∑ (𝜶𝒊𝒐𝒃𝒔−𝜶𝒊𝒐𝒃𝒔̅̅ ̅̅ ̅̅ ̅)𝟐𝑵

𝒊=𝟏

 

where i is the predicted value from the LiDAR data for plot i, iobs is the observed value 

in the field for the same plot, and N is the number of plots analyzed.  
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In addition, the 𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  was also calculated that introduces a penalization to the R2 

value for each predictor that is introduced in the model. The value of the penalization 

depends on the number of predictors used and the size of the sample, that is, the number 

of degrees of freedom. 𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2  formula is as follows: 

Equation 4-17    𝑹𝒂𝒅𝒋𝒖𝒔𝒕𝒆𝒅
𝟐 =  𝑹𝟐 − (𝟏 − 𝑹𝟐) ∙

𝒏−𝟏

𝒏−𝒌−𝟏
 

where n the sample size and k the number of predictors entered in the model. 

The root mean square error (RMSE), which represents the average of the differences 

between the predicted and observed values, defined by the following equation, was also 

calculated: 

Equation 4-18    𝑹𝑴𝑺𝑬 =  √∑
(𝜶𝒊−𝜶𝒊𝒐𝒃𝒔)𝟐

𝑵
𝑵
𝒊=𝟏  

Since a large number of field plots were not available, the evaluation was carried out 

using the cross validation procedure, which consists of using (n-1) subsets of plots for 

the generation of the model and 1 for the validation, repeating the process n times so 

that the subset of validation plots is always different and independent from the rest. 

4.3.5 Results and Discursion 

The result for Nogueruelas was a unique model given that only one species is present in 

the pilot area and the forest maintains a similar structure except for 2 plots with less 

density of trees which are the plots with less biomass (Figure 23).  

The model generated for Nogueruelas (ML1) obtained a R2 of 0.827 and a Radj
2 of 0.815, 

both statistics with cross validation leaving one out. The RMSEcv for this model was 

1,074.45 kg of biomass. 

Equation 4-19 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 =  −3917.56 + 546.27 ∙  𝐸𝑙𝑒𝑣. 𝑃80 + 465.02 ∙  

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑓𝑖𝑟𝑠𝑡 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑎𝑏𝑜𝑣𝑒 𝑚𝑒𝑎𝑛 − 456.80 ∙  𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑎𝑙𝑙 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑎𝑏𝑜𝑣𝑒 𝑚𝑒𝑎𝑛 
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Figure 23. Plots with the maximum, mean and minimum biomass for the Nogueruelas 

pilot area. On the left is a vertical view of the plots with the observed and predicted 

biomass. On the right a zenithal view of the distribution of the trees and their canopy 

cover. 

Three different models were generated for Espadán. 

The model (ML2) was carried out with 78 plots, where the plots with the highest biomass 

value (plot 42 = 19,402kg) and lowest biomass value (plot 53 = 24.8kg) were discarded. 

The R2 obtained is 0.704, Radj
2 of 0.692 and RMSEcv equal to 2,140.33 kg. 

Equation 4-20 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 =  −476.32 − 0.93 ∙  𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑢𝑛𝑡 + 23.93 ∙  𝐼𝑛𝑡. 𝑚𝑎𝑥𝑖𝑚𝑢𝑛

+ 2.15 ∙  𝑅𝑒𝑡𝑢𝑟𝑛 1 𝑐𝑜𝑢𝑛𝑡 𝑎𝑏𝑜𝑣𝑒 2.00 𝑚𝑒𝑡𝑒𝑟𝑠 
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The best result was obtained for Espadán using only the P. halepensis plots (T1) without 

the regenerated P. halepensis plots. The model (ML3) for biomass was generated with 

42 plots and reached a R2 of 0.843, Radj
2 of 0.831 and RMSEcv equal to 798.60 kg. 

Equation 4-21 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 =  −3298.40 + 291.74 ∙  𝐸𝑙𝑒𝑣. 𝑃75 − 7700.29 ∙  𝐼𝑛𝑡. 𝐿. 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠

+ 114.23 ∙  𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑓𝑖𝑟𝑠𝑡 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑎𝑏𝑜𝑣𝑒 𝑚𝑒𝑎𝑛 

For the mixed plots of P. pinaster and Q. suber, the predictive model was generated from 

25 plots. For the biomass, the model (ML4) achieved a R2 of 0.807, Radj
2 of 0.779 and 

RMSEcv of 1,877.41 kg. 

Equation 4-22 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 =  −8662.72 + 40.10 ∙  𝐼𝑛𝑡. 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 + 522.62

∙  𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑓𝑖𝑟𝑠𝑡 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑎𝑏𝑜𝑣𝑒 𝑚𝑒𝑎𝑛 − 61049.99 ∙  𝐼𝑛𝑡. 𝐿. 𝐶𝑉 

Figure 24 shows scatter plots of the plot-level field-based observed vs LiDAR-based 

predicted variables with linear fits. The worst model obtained corresponds to the model 

made for the entire Espadán pilot site (Figure 24 – ML2) and achieves a Radj
2 of 0.692. 

The deficiencies of the model are explained by the diversity of species and the different 

types of structure present in the area. There are also great differences in density and 

basal area from one plot to another. Evaluating the scatter plot for this model (Figure 24. 

ML2) some outliers are evident corresponding to significant under-prediction of the 

highest observed AGB values. 

The models ML3 improve more than 14% when they are carried out only for the species 

P. halepensis. The improvement in accuracy is achieved because they are monospecific 

plots with a similar vertical vegetation structure. In addition, a continuous range of 

different tree densities is represented in this set of plots, which improves the fit of the 

model. However, for the ML3 model the regenerated P. halepensis plots are not included, 

which are plots with a very high density and which generate great differences in the 

values of the LiDAR metrics. 
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On the other hand, the model for the mixed 

plots, ML4, of P. pinaster and Q. suber 

also improves almost 9% with respect to 

the general model for the whole area of 

Espadán. This model reduces the 

accuracy by 5% compared to the P. 

halepensis model, mainly due to the 

variability of the vertical and horizontal 

vegetation structure generated by the Q. 

suber species. This species has a lower 

height than Pinus pinaster and also 

modifies the continuity of the crown 

coverage generating gaps. These two 

facts significantly affect the LiDAR metrics 

and consequently generate a greater 

variability in the returns. To better adjust 

the model for this type of plots it would be 

convenient to have a larger number of 

plots. 

Lastly the model ML1 for Nogueruelas 

performed on a monospecific area 

reaches a Radj
2 of 0.815. This study area 

has plots of different vertical vegetation 

structure but well represented in the study 

sample, which makes the model fit with a 

remarkable precision. Nevertheless, the 

values of the models for P. halepensis in 

Espadán and Nogueruelas have a Radj
2 

between the habitual values obtained by 

other authors. For example, Montealegre 

Gracia et al. (2015) reaches a Radj
2 0.89 in 

biomass estimation for P. halepensis 

monospecific stands with discrete low 

density LiDAR and parametric methods. 

Domingo et al. (2018) reaches a Radj
2 of 

Figure 24. AGB Plot-level observed v. 

predicted values for the different 

models. Solid line represents the 

linear fitting. 
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0.87 with parametric methods for P. halepensis stands with significant bush density. 

García et al. (2010) also generate general models for mixed forest areas (P. nigra, 

Juniperus thurifera and Quercus Ilex) where it reaches Radj
2 of 0.70 close to the 0.69 

reached for the general model of Espadán. They also develop models by individual 

species where for P. nigra it reaches a Radj
2 of 0.84 close to the single species models 

generated in this work. Also Ruiz et al. (2014) reach Radj
2 values of 0.85 for pure plots of 

P. Nigra and P.sylvestris with a radius of 15 meters close to the value obtained in the 

Nogueruelas model. 

The RMSEcv value for Nogueruelas is 1,074 kg. If we apply the formulas of Montero et al. 

(2005) for the species P. sylvestris the root mean square error of the estimation would 

correspond to approximately 5 trees of 25 cm DBH in a plot with 49 trees of mean density. 

If we make the same comparison for the RMSEcv of the general model of Espadán which 

is 2,140 kg it would be an error of 14 P. halepensis of 25 cm of DBH in a plot with a mean 

density of 68 trees. For the Espadán P. halepensis model error would be an equivalence 

of 5 trees and for the mixed model of 12 and 11 trees if they were P. pinaster or Q. suber 

respectively. 

As a conclusion, a methodology for the estimation of AGB based on metrics obtained 

from discrete LiDAR data on the Spanish pilot site has been described and evaluated. 

Geographically closest works have been reported using discrete LiDAR with different 

degrees of success, in different Mediterranean areas, species and forest structure 

(Domingo et al., 2018; García et al., 2010; Montealegre Gracia et al., 2015; Ruiz et al., 

2014). In our case, however, there was significantly more species variability: mean and 

standard deviation of the AGB parameters were highly compared to the other studies. 

This variability may make it difficult to define more precise models. For the lower species 

and forest structure variability, better biomass estimation models are fitted. The results 

show that the use of discrete lidar-based methodologies is accurate for estimating AGB. 

However, these models cannot be extrapolated to other areas with different species, 

density, or forest structure. 
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5.  COMPARISON OF METHODS  

Having evaluated each of the three models’ ability to estimate biomass at our study sites, 

it is now possible to compare the effectiveness of the three techniques to be able to draw 

some conclusions and provide recommendations for the future. In order to do so, we 

selected three criteria as the basis for the comparison: modelling technique accuracy, 

transferability and dependence on conditions variability at test site. 

From the estimation accuracy point of view, both IWCM using TanDEM-X data and 

LiDAR data models showed high accuracy in the range between 75 and 85 per cent for 

both Espadán and Nogueruelas test sites in Spain. Additionally, LiDAR point cloud 

modelling allows to describe forest structure with a great precision. On the other hand, 

Sentinel-1’s C-band biomass estimation using WCM performance was limited mainly by 

the signal saturation at higher biomass levels, thus, producing better estimation results 

at lower biomass levels, with the lowest rRMSE value of 42 per cent achieved at 

Nogueruelas test site. 

Conversely, the WCM using Sentinel-1’s backscatter intensity data is the most 

transferable approach of the three as it does not require any ground truth data for model 

calibration, therefore, theoretically, it can be applied to any marginal lands in Europe, or 

even globally. Relatively simple LiDAR methodology can be adjusted to any test site 

having ground truth data available to calibrate the model. However, airborne LiDAR data 

does not have global coverage (GEDI currently provides satellite LIDAR data on a global 

scale). High-density LiDAR data is not free. There are free sources of LiDAR data in 

some countries, e.g., Spain, but with lower density of points per square meter. Finally, 

the IWCM using TanDEM-X data besides using the ground truth data to calibrate the 

model also uses LiDAR retrieved DSM and DTM layers to estimate vegetation height as 

an additional parameter in the methodology. Therefore, it has the worst spatial 

transferability of the three, mainly, due to the fact that none of TanDEM-X and high point 

density LiDAR data is freely available. 

Finally, the WCM and the IWCM methods using short-wavelength spaceborne SAR data 

which are sensitive to local environmental conditions at the time of image acquisition as 

the electromagnetic waves are strongly affected by the physical properties of the sensed 

vegetation. Therefore, the meteorological conditions should always be checked and kept 

in mind when performing biomass estimation using these methods. Airborne LiDAR 

technology is usually used only when environmental and meteorological conditions allow 
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to do so, therefore, there is no additional requirement to adjust the measurements for 

biomass estimation once the LiDAR point cloud is retrieved. Additionally, all three 

methods show some sensitivity to different types of trees, but only the WCM using solely 

Sentinel-1 C-band data is severely affected by increasing biomass due to signal 

saturation at high biomass levels. 

To conclude, airborne LiDAR technology-based methodology showed the best biomass 

estimation performance in the presented study areas, shortly followed by TanDEM-X and 

LiDAR data fusion exploiting method, leaving the WCM using only Sentinel-1 C-band 

data behind. However, the latter shows higher transferability features, which shall be 

exploited further by the future spaceborne SAR missions in 2020s. 

5.1 Summary of Pros and cons of each methodology 

5.1.1 WCM Method 

Pros: 

✓ Transferability – model calibration on demand (can be done individually for each 

image). 

✓ Free and available everywhere (at least Europe-wide) – Sentinel-1 data free and 

available globally, Copernicus Tree Canopy Density (TCD) & CORINE Land 

Cover (CLC) available Europe-wide, but there are alternatives for global solutions 

too. 

Cons: 

▪ Poor accuracy – generally somewhere around 30 – 80% rRMSE. 

▪ Early signal saturation – short C-band wavelength has limited penetration leading 

to loss of signal sensitivity at higher biomass levels (above 100 Mg/ha) under 

non-optimal environmental and meteorological conditions at the time of image 

acquisition. 

▪ Strong sensitivity to weather conditions – meteorological conditions can influence 

the retrieval accuracy significantly over the same area. 

5.1.2 IWCM Method 

Pros:  

✓ Better accuracy: The method implemented here achieves better accuracy when 

compared to Sentinel-1 only methods such as WCM. The original method using 
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TanDEM-X data is even more promising and is able to achieve 15.8% to 21.2% 

rRMSE, which is better than many SAR based biomass estimation methods.  

Cons: 

▪ Availability of data: TanDEM-X data is not freely available. Lack of freely available 

data restricts the application of this method severely.  

▪ Transferability: Some of the parameters used in this method have initial values 

and ranges that are site and forest type specific. For higher accuracy, these 

parameters need to be obtained from field data which may not be available for all 

regions.  

▪ Complexity of method: Inverse modelling approach is complex, and depends 

heavily on initial conditions, i.e. in this case the observations taken into account, 

which might not be representative of the general conditions of the site. Need to 

derive model parameters for every site separately taking into consideration the 

site conditions during observation.  

5.1.3  LiDAR 

Pros: 

✓ LiDAR technology allows to describe the forest structure of the forest with great 

precision. 

✓ Good accuracy: The models generated with discrete LiDAR reached an accuracy 

(R2
adj) of 0.82 for Nogueruelas and an accuracy of 0.83 and 0.78 for the models 

developed by species in Espadán. 

✓ Free software is available for the processing of LiDAR data. 

✓ The Methodology is simple to elaborate and can be extrapolated to other study 

sites, as long as field data and LiDAR data from the area in question will be 

available. 

Cons: 

▪ Transferability: The models generated for this project are not transferable to other 

areas with different species, density or forest structure because the models are 

based on field data from a specific forest type. 

▪ Airborne LiDAR data does not have global coverage (GEDI currently provides 

satellite LIDAR data on a global scale). High-density LiDAR data is not free. 

There are free sources of LiDAR data in some countries (e.g. Spain) but with 
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lower density of points per square meter. For the MAIL project, only the areas of 

Nogueruelas and Espadán with high density LiDAR data were available. 

▪ The accuracy of the biomass models is directly related to the variability of species 

and structures of the study forest, as can be seen in the general model carried 

out for the entire Espadán area. The lower species and forest structure variability, 

better biomass estimation models are fitted. 

6. RECOMMENDATIONS 

We have observed that the LiDAR methodology obtains better results than the WCM and 

IWCM methodologies. The IWCM method can produce marginally better accuracy using 

Sentinel-1 data, hence it is recommended only when TanDEM-X data is available, along 

with relevant field data. Only the WCM methodology allows extrapolation of the result to 

the entire EU and does not require more data than the Sentinel-1C image. This 

methodology has a relatively low accuracy, so the use of this methodology should be 

subject to the accuracies obtained for different areas of Europe, depending on the type 

of forest, density (number of trees), and meteorological conditions of image acquisition. 

To implement the LiDAR methodology LiDAR data and biomass data as ground truth are 

necessary. We recommend not using the LiDAR biomass estimation equations for other 

test sites than those where the equations have been configured. To apply the LiDAR 

methodology in other forest areas it is recommended to adjust the equations with field 

data and with LiDAR data acquired on the area under study. For future studies it is 

recommended to work with acquired data on MLs. Another methodology that could be 

explored would be based on satellite LiDAR data (GEDI) that has global coverage. To 

use this satellite sensor it is also recommended to have ground truth data on the pilot 

sites under study. 

On the other hand, the biomass estimation equations with LiDAR have been configured 

on forest areas and not on marginal lands so it is not extrapolated to the marginal areas 

inside the pilot sites either. However, the results obtained with these methodologies can 

help define the objective and future forest that is planned to be established in the MLs. 

These biomass values can be considered as the reference values in task 4.2, as this 

task aims to define the plantation modules on the marginal areas and perform a future 

short, medium and long term estimate of the biomass and CO2 stock that will accumulate 

in the afforestations. In consequence, knowing the amount of biomass and carbon stored 

in the forests existing today in the test sites can be a great help in estimating the biomass 
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that will be accumulated by the afforestations established on the marginal lands of the 

same test sites. Not forgetting the limitations of soil, climate, slope, etc. of the MLs 

defined in tasks 2.1 and 2.3. 

To determine the current status of the biomass in the MLs defined in the pilot sites, we 

recommend using the global product Climate Change Initiative – Biomass (CCI-Biomass) 

from ESA climate office with a resolution of 100 x 100 m, i.e. one pixel has the size of 1 

ha, equivalent to the minimum size used to define marginal lands (defined in task 2.3). 

This product is available for three different periods 2010, 2017 and 2018, is free and 

open access from ESA climate office webpage. This product has an exhaustive 

methodology and evaluation of the accuracy obtained in the biomass layers of the 

different years. On the other hand, NASA provides the Global Aboveground and 

Belowground Biomass Carbon Density Maps for the Year 2010 (Spawn, Sullivan, Lark, 

& Gibbs, 2020). This dataset provides temporally consistent and harmonized global 

maps of aboveground and belowground biomass carbon density for the year 2010 at a 

300-m spatial resolution. Nevertheless, according to the definition of MLs, most of these 

lands should be areas devoid of vegetation cover. 

The methodologies proposed in Task 2.6 for the estimation of biomass on marginal 

lands, given the spatial and temporal resolution at which these can work, can be 

considered as a good tool for the future monitoring and evaluation of the forest stands 

established in the MLs. 

  

https://daac.ornl.gov/VEGETATION/guides/Global_Maps_C_Density_2010.html
https://climate.esa.int/en/projects/biomass/news/esa-launches-cci-biomass/
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Figure 24. AGB Plot-level observed v. predicted values for the different models. Solid 

line represents the linear fitting. .................................................................................. 69 
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